Let
m*n=w (i)
m is a 3-digit number
so is n
w is a 6-digit number
In equation (i) only 4 distinct digits are used.
Find the possible equations.
(In reply to
@ Charlie: Answers for the revised puzzle: by Ady TZIDON)
aha! I did not notice the non-zero clause. mea culpa
But due to the ambiguity of the English language (and probably many other languages) "only 4 different non-zero digits" might mean that any digits that are non-zero must fit within the count of only four different ones, while any number of zeros might be allowed. Just for sake of argument, following that reasoning:
400 400 160000
401 401 160801
402 402 161604
497 497 247009
498 498 248004
499 499 249001
500 500 250000
501 501 251001
502 502 252004
503 503 253009
525 525 275625
526 526 276676
527 527 277729
600 600 360000
601 601 361201
602 602 362404
603 603 363609
640 640 409600
641 641 410881
642 642 412164
664 664 440896
665 665 442225
666 666 443556
898 898 806404
899 899 808201
900 900 810000
901 901 811801
948 948 898704
949 949 900601
950 950 902500
951 951 904401
995 995 990025
996 996 992016
997 997 994009
998 998 996004
999 999 998001
In each case only 4 different digits other than zero are used.
But yes I do understand the actual intent of your exclusion of zero, as not allowing zeros at all. Just a comment on non-mathematical (human) language.
|
Posted by Charlie
on 2017-12-03 19:29:13 |