Consider:
(15 + 25) + (17 + 27) = 2 *(1 + 2)4
(15 + 25 + 35) + (17 + 27 + 37) = 2 *(1 + 2 + 3)4
(15 + 25 + 35 + 45) + (17 + 27 + 37 + 47) = 2 *(1 + 2 + 3 + 4)4
... ... and so on ...
First, verify that both sides are equal for further increase in n,
then prove it.
Show the pattern works for n=1
1^5+7^5=2=2*(1)^4
Assume it works for n-1:
(1^5+2^5+...+(n-1)^5)+(1^7+2^7+...+(n-1)^7)=2*(1+2+...+(n-1))^4
Show it works for n:
(1^5+2^5+...+(n)^5)+(1^7+2^7+...+(n)^7)=2*(1+2+...+(n))^4
The difference being
n^7+n^5 = 2[(1+2+...+(n-1))^4 - (1+2+...+(n))^4]
=2[[n(n+1)/2]^4 - [[(n-1)n/2]^4]
=n^4((n+1)^4-(n-1)^4)/8
=n^4(8n^3+8n)/8
=n^7+n^5
|
Posted by Jer
on 2017-12-10 19:38:26 |