All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Magic circle revisited (Posted on 2017-12-22) Difficulty: 3 of 5
Here are counters numbered 0-9 in a circle:
                  0

        1                   2




  8                               7





  4                               5




        6                   3

                  9
The property that makes it a magic circle is: there is a specific starting counter (in this case the 9) so that if you proceed clockwise by that number of steps and repeat the process with each new number you eventually visit every number and end at zero.

Given numbers 0-n:
For what values of n does a magic circle exist?
For a given value of n, how many magic circles exist?
Are there infinite families of magic circles?

No Solution Yet Submitted by Jer    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer exploration and OEIS identification. | Comment 2 of 5 |
In the following discussion, I use n to represent the number of positions rather than the highest numbered position.  This is one higher than the n as defined in the puzzle. I just realized this after reading Steve Herman's comment.

From n=2 through 10 are shown below the number of arrangements that are magic. Following this for each n are the first (up to) 10 such sequences in reverse order of the number found at the point on the circle. It's in reverse order as I thought initially it would be faster that way, though on later thought I really don't think so. For example, for n = 6, the sequence listed as 25314 represents in reverse order as the program worked backwards (counterclockwise), as the start is on a 4, going that many positions to a 1 and that many positions to a 3, etc. in:

                0
             5     1
                
             2     3
                4
                
  while 41352 represents starting on 2 in:
  
                0
             5     1
                
             3     4
                2  
  

2  1
   1
3  0
4  2
   123
   321
5  0
6  4
   25314
   41352
   14325
   52341
7  0
8  24
   2746315
   5674123
   6142573
   3614725
   5274163
   1576432
   6542137
   6751423
   5647312
   3752416
9  0
10  288
   347895216
   621357984
   394215768
   763215894
   475218693
   256834179
   259783416
   392417568
   386524179
   759238416
   
It seems that only even n have solutions.

That being the case, the following show, not only the reverse sequence of numbers encountered, but the physical sequence clockwise from 0,  up to 12:

2  1
   1    01
4  2
   123    0231
   321    0312
6  4
   25314    013425
   41352    014235
   14325    042531
   52341    053142
8  24
   2746315    01345627
   5674123    01453672
   6142573    01623457
   3614725    02475316
   5274163    02753146
   1576432    04572631
   6542137    04637512
   6751423    04673152
   5647312    04752613
   3752416    05146372
10  288
   347895216    0124567389
   621357984    0125647938
   394215768    0126485397
   763215894    0127345689
   475218693    0128534697
   256834179    0145793628
   259783416    0145963728
   392417568    0146782395
   386524179    0146792358
   759238416    0147368259
12  3856
   3b6218a4795    0124685a73b9
   8215ba67349    012486935b7a
   8216a47b359    012584963a7b
   8214a673b59    01258693b47a
   78a35b21694    0125b746389a
   3674218a9b5    0126485a739b
   8214673a9b5    0126835a749b
   821537b4a69    012683945a7b
   82146a73b95    01268a53b479
   5976a34218b    012748b5369a


To take one example, the last, starting at b (representing 11 in hex) go right 11 to 8, then right 8 to 1, etc.  

   
DefDbl A-Z
Dim crlf$, s$, foundone, hold$, s0$, ptr, n, ctN, hst$(10), ss$(10)


Private Sub Form_Load()
 Form1.Visible = True
 
 
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 For n = 14 To 16 Step 2
   s0$ = "0"
   For i = 1 To n - 1
     s0$ = s0$ + Mid$("123456789abcdefghijklmnopqrstuvwxyz", i, 1)
   Next i
   backpart$ = Mid(s0, 2): h$ = backpart
   ctN = 0
   Do
     s$ = "0" + backpart
     foundone = 0
     ptr = 1: hold = ""
     traceBack
     If foundone Then ctN = ctN + 1
     permute backpart
   Loop Until backpart = h
   Text1.Text = Text1.Text & n & "  " & ctN & crlf
   For i = 1 To ctN
    If i <= 10 Then
     Text1.Text = Text1.Text & "   " & hst(i) & "    " & ss(i) & crlf
    End If
   Next
 Next n
 
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub

Sub traceBack()
  DoEvents
  If foundone Then Exit Sub
  c$ = Mid(s, ptr, 1)
  i = ptr - 1: If i < 1 Then i = i + n
  Do
    dist = (ptr - i + 2 * n) Mod n
    v = InStr(s0, Mid(s, i, 1)) - 1
    DoEvents
    If v = dist Then
      If InStr(hold, Mid(s, i, 1)) = 0 Then
        hold = hold + Mid(s, i, 1)
        ptrSave = ptr
        ptr = i
        If Len(hold) = n - 1 Then
          If ptr <> 1 Then
           foundone = 1
           If ctN < 10 Then
             hst(ctN + 1) = hold
             ss(ctN + 1) = s
           End If
          End If
        Else
           traceBack
        End If
        ptr = ptrSave
        hold = Left(hold, Len(hold) - 1)
        If foundone Then Exit Sub
      End If
    End If
    i = i - 1: If i < 1 Then i = i + n
  Loop Until i = ptr
End Sub

Edited on December 22, 2017, 1:05 pm
  Posted by Charlie on 2017-12-22 13:04:22

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information