Prove: If the sides a, b, c of a triangle satisfy a^2 + b^2 = kc^2, then k >1/2.
Because this is a triangle,
(1) a+b > c,
Squaring gives
(2) a^2 + b^2 + 2ab > c^2
For all numbers
(3) (a-b)^2 >= 0
Expanding gives
(4) a^2 + b^2 - 2ab >= 0
Adding 2 and 4 gives
(5) 2(a^2 + b^2) > c^2
Dividing by 2 gives
(6) a^2 + b^2 > (1/2) * c^2