All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Introducing sphenic numbers (Posted on 2018-10-14) Difficulty: 2 of 5
A sphenic number S.N. is a product of three distinct prime numbers.

a. Clearly each S.N. has 8 divisors. Show that not only S.N.s claim this feature.
b. Find the smallest consecutive pair n,n+1 of sphenic numbers.
c. Same for the smallest triplet.
d. Prove that sphenic quadruplet n,n+1,n+2,n+3 is "mission impossible".

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
computer solution | Comment 2 of 3 |
a) If p is a prime, p^7 has exactly eight factors: 1, p, p^2,...,p^7
b) & c - see below
d) The four-tuple cannot work since every group of 4 consecutive numbers contains a number divisible by 4 and thus has 2 as a non-distinct prime factor.

The pair is  (2 5 23) (3 7 11):  230 231
The trio is (7 11 17) (2 5 131) (3 19 23): 1309 1310 1311 


>ff

       230         231

        1309        1310        1311

        program pp

        implicit none

        integer 1 flag,cnt,i,i1,i2,i3,j,k,p(1000),tri(142880),dum

        open(2,file='primes1.txt',status='old')

           do i=1,12

           j=8*I-7

           read(2,*)(p(k),k=j,j+7)

           enddo

           cnt=0

           do i1=1,94

                do i2=i1+1,95

                   do i3=i2+1,96

                   cnt=cnt+1

                   tri(cnt)=p(i1)*p(i2)*p(i3)

                   enddo

                enddo

           enddo

           do i=1,cnt-1

                do j=i+1,cnt

                   if(tri(i).gt.tri(j))then

                   dum=tri(j)

                   tri(j)=tri(i)

                   tri(i)=dum

                   endif

                enddo

           enddo

           flag=0

           do i=1,142878

                if(flag.eq.0.and.tri(i)+1.eq.tri(i+1))then

                print*,tri(i),tri(i+1)

                flag=1

                endif

                if(tri(i)+1.eq.tri(i+1).and.tri(i)+2.eq.tri(i+2))then

                print*,tri(i),tri(i+1),tri(i+2)

                stop

                endif

           enddo

        end

Note: soon after the set given, trios come fast and furiously:

        1309        1310        1311

        1885        1886        1887

        2013        2014        2015

        2665        2666        2667

        3729        3730        3731

        5133        5134        5135

        6061        6062        6063

        6213        6214        6215

        6477        6478        6479

        6853        6854        6855

        6985        6986        6987

        7257        7258        7259

        7953        7954        7955

...

Edited on October 14, 2018, 10:08 am
  Posted by Steven Lord on 2018-10-14 09:28:54

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information