All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Introducing sphenic numbers (Posted on 2018-10-14) Difficulty: 2 of 5
A sphenic number S.N. is a product of three distinct prime numbers.

a. Clearly each S.N. has 8 divisors. Show that not only S.N.s claim this feature.
b. Find the smallest consecutive pair n,n+1 of sphenic numbers.
c. Same for the smallest triplet.
d. Prove that sphenic quadruplet n,n+1,n+2,n+3 is "mission impossible".

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution Comment 3 of 3 |
a. 2^3 * 3 = 24 has this feature, as does any number that's a prime squared times another prime. The divisors of 24 are 1, 2, 4, 8, 3, 6, 12 and 24.

b. and c. All the pairs and triplets below n=3000 are tabulated below. The first pair is 230,231 and the first triplet is 1309-1311. There are four sets of triplets in the list:

230-231  2
230 = 2 * 5 * 23
231 = 3 * 7 * 11

285-286  2
285 = 3 * 5 * 19
286 = 2 * 11 * 13

429-430  2
429 = 3 * 11 * 13
430 = 2 * 5 * 43

434-435  2
434 = 2 * 7 * 31
435 = 3 * 5 * 29

609-610  2
609 = 3 * 7 * 29
610 = 2 * 5 * 61

645-646  2
645 = 3 * 5 * 43
646 = 2 * 17 * 19

741-742  2
741 = 3 * 13 * 19
742 = 2 * 7 * 53

805-806  2
805 = 5 * 7 * 23
806 = 2 * 13 * 31

902-903  2
902 = 2 * 11 * 41
903 = 3 * 7 * 43

969-970  2
969 = 3 * 17 * 19
970 = 2 * 5 * 97

986-987  2
986 = 2 * 17 * 29
987 = 3 * 7 * 47

1001-1002  2
1001 = 7 * 11 * 13
1002 = 2 * 3 * 167

1022-1023  2
1022 = 2 * 7 * 73
1023 = 3 * 11 * 31

1065-1066  2
1065 = 3 * 5 * 71
1066 = 2 * 13 * 41

1085-1086  2
1085 = 5 * 7 * 31
1086 = 2 * 3 * 181

1105-1106  2
1105 = 5 * 13 * 17
1106 = 2 * 7 * 79

1130-1131  2
1130 = 2 * 5 * 113
1131 = 3 * 13 * 29

1221-1222  2
1221 = 3 * 11 * 37
1222 = 2 * 13 * 47

1245-1246  2
1245 = 3 * 5 * 83
1246 = 2 * 7 * 89

1265-1266  2
1265 = 5 * 11 * 23
1266 = 2 * 3 * 211

1309-1311  3
1309 = 7 * 11 * 17
1310 = 2 * 5 * 131
1311 = 3 * 19 * 23

1334-1335  2
1334 = 2 * 23 * 29
1335 = 3 * 5 * 89

1406-1407  2
1406 = 2 * 19 * 37
1407 = 3 * 7 * 67

1434-1435  2
1434 = 2 * 3 * 239
1435 = 5 * 7 * 41

1442-1443  2
1442 = 2 * 7 * 103
1443 = 3 * 13 * 37

1462-1463  2
1462 = 2 * 17 * 43
1463 = 7 * 11 * 19

1490-1491  2
1490 = 2 * 5 * 149
1491 = 3 * 7 * 71

1505-1506  2
1505 = 5 * 7 * 43
1506 = 2 * 3 * 251

1533-1534  2
1533 = 3 * 7 * 73
1534 = 2 * 13 * 59

1581-1582  2
1581 = 3 * 17 * 31
1582 = 2 * 7 * 113

1598-1599  2
1598 = 2 * 17 * 47
1599 = 3 * 13 * 41

1605-1606  2
1605 = 3 * 5 * 107
1606 = 2 * 11 * 73

1614-1615  2
1614 = 2 * 3 * 269
1615 = 5 * 17 * 19

1634-1635  2
1634 = 2 * 19 * 43
1635 = 3 * 5 * 109

1729-1730  2
1729 = 7 * 13 * 19
1730 = 2 * 5 * 173

1742-1743  2
1742 = 2 * 13 * 67
1743 = 3 * 7 * 83

1833-1834  2
1833 = 3 * 13 * 47
1834 = 2 * 7 * 131

1885-1887  3
1885 = 5 * 13 * 29
1886 = 2 * 23 * 41
1887 = 3 * 17 * 37

1946-1947  2
1946 = 2 * 7 * 139
1947 = 3 * 11 * 59

2013-2015  3
2013 = 3 * 11 * 61
2014 = 2 * 19 * 53
2015 = 5 * 13 * 31

2054-2055  2
2054 = 2 * 13 * 79
2055 = 3 * 5 * 137

2085-2086  2
2085 = 3 * 5 * 139
2086 = 2 * 7 * 149

2093-2094  2
2093 = 7 * 13 * 23
2094 = 2 * 3 * 349

2109-2110  2
2109 = 3 * 19 * 37
2110 = 2 * 5 * 211

2134-2135  2
2134 = 2 * 11 * 97
2135 = 5 * 7 * 61

2162-2163  2
2162 = 2 * 23 * 47
2163 = 3 * 7 * 103

2265-2266  2
2265 = 3 * 5 * 151
2266 = 2 * 11 * 103

2289-2290  2
2289 = 3 * 7 * 109
2290 = 2 * 5 * 229

2337-2338  2
2337 = 3 * 19 * 41
2338 = 2 * 7 * 167

2354-2355  2
2354 = 2 * 11 * 107
2355 = 3 * 5 * 157

2378-2379  2
2378 = 2 * 29 * 41
2379 = 3 * 13 * 61

2397-2398  2
2397 = 3 * 17 * 47
2398 = 2 * 11 * 109

2405-2406  2
2405 = 5 * 13 * 37
2406 = 2 * 3 * 401

2409-2410  2
2409 = 3 * 11 * 73
2410 = 2 * 5 * 241

2485-2486  2
2485 = 5 * 7 * 71
2486 = 2 * 11 * 113

2505-2506  2
2505 = 3 * 5 * 167
2506 = 2 * 7 * 179

2585-2586  2
2585 = 5 * 11 * 47
2586 = 2 * 3 * 431

2634-2635  2
2634 = 2 * 3 * 439
2635 = 5 * 17 * 31

2665-2667  3
2665 = 5 * 13 * 41
2666 = 2 * 31 * 43
2667 = 3 * 7 * 127

2678-2679  2
2678 = 2 * 13 * 103
2679 = 3 * 19 * 47

2685-2686  2
2685 = 3 * 5 * 179
2686 = 2 * 17 * 79

2697-2698  2
2697 = 3 * 29 * 31
2698 = 2 * 19 * 71

2702-2703  2
2702 = 2 * 7 * 193
2703 = 3 * 17 * 53

2714-2715  2
2714 = 2 * 23 * 59
2715 = 3 * 5 * 181

2765-2766  2
2765 = 5 * 7 * 79
2766 = 2 * 3 * 461

2769-2770  2
2769 = 3 * 13 * 71
2770 = 2 * 5 * 277

2794-2795  2
2794 = 2 * 11 * 127
2795 = 5 * 13 * 43

2821-2822  2
2821 = 7 * 13 * 31
2822 = 2 * 17 * 83

2829-2830  2
2829 = 3 * 23 * 41
2830 = 2 * 5 * 283

2914-2915  2
2914 = 2 * 31 * 47
2915 = 5 * 11 * 53

2937-2938  2
2937 = 3 * 11 * 89
2938 = 2 * 13 * 113

2945-2946  2
2945 = 5 * 19 * 31
2946 = 2 * 3 * 491

2954-2955  2
2954 = 2 * 7 * 211
2955 = 3 * 5 * 197

d. One of the four numbers must be a multiple of 4, meaning that 2 appears as a factor at least squared, meaning twice, but the three prime factors by definition should be unique (not repeated).


DefDbl A-Z
Dim crlf$, fct(20, 1)


Private Sub Form_Load()
 Form1.Visible = True
  
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 For n = 2 To 3000
    f = factor(n)
    If f = 3 Then good = 1 Else good = 0
    For i = 1 To f
      If fct(i, 1) > 1 Then good = 0: Exit For
    Next
    If good Then
      ct = ct + 1
    Else
      If ct > 1 Then
        Text1.Text = Text1.Text & n - ct & "-" & n - 1 & "  " & ct & crlf
        For i = n - ct To n - 1
          f = factor(i)
          Text1.Text = Text1.Text & i & " = "
          For j = 1 To f
            Text1.Text = Text1.Text & fct(j, 0)
            If fct(j, 1) > 1 Then Text1.Text = Text1.Text & "^" & fct(j, 1)
            If j < f Then Text1.Text = Text1.Text & " * "
          Next
          Text1.Text = Text1.Text & crlf
        Next
        Text1.Text = Text1.Text & crlf
      End If
      ct = 0
    End If
    DoEvents
 Next n
 
 
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub

Function factor(num)
 diffCt = 0: good = 1
 n = Abs(num): If n > 0 Then limit = Sqr(n) Else limit = 0
 If limit <> Int(limit) Then limit = Int(limit + 1)
 dv = 2: GoSub DivideIt
 dv = 3: GoSub DivideIt
 dv = 5: GoSub DivideIt
 dv = 7
 Do Until dv > limit
   GoSub DivideIt: dv = dv + 4 '11
   GoSub DivideIt: dv = dv + 2 '13
   GoSub DivideIt: dv = dv + 4 '17
   GoSub DivideIt: dv = dv + 2 '19
   GoSub DivideIt: dv = dv + 4 '23
   GoSub DivideIt: dv = dv + 6 '29
   GoSub DivideIt: dv = dv + 2 '31
   GoSub DivideIt: dv = dv + 6 '37
   If INKEY$ = Chr$(27) Then s$ = Chr$(27): Exit Function
 Loop
 If n > 1 Then diffCt = diffCt + 1: fct(diffCt, 0) = n: fct(diffCt, 1) = 1
 factor = diffCt
 Exit Function

DivideIt:
 cnt = 0
 Do
  q = Int(n / dv)
  If q * dv = n And n > 0 Then
    n = q: cnt = cnt + 1: If n > 0 Then limit = Sqr(n) Else limit = 0
    If limit <> Int(limit) Then limit = Int(limit + 1)
   Else
    Exit Do
  End If
 Loop
 If cnt > 0 Then
   diffCt = diffCt + 1
   fct(diffCt, 0) = dv
   fct(diffCt, 1) = cnt
 End If
 Return
End Function


  Posted by Charlie on 2018-10-14 17:35:31
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information