All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
3^n is a sum of 3 squares (Posted on 2019-01-20) Difficulty: 4 of 5
3=1+1+1
9=4+4+1
27=25+1+1

Prove:
Every power of 3 is a sum of three squares relatively prime to 3.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Solution Comment 1 of 1

All powers of 3 are of the form x^2+2y^2.
x is {1,1,5,7,1,23,...} A087455 in Sloane
y is {1,2,1,4,11,10,...} A088137 in Sloane

From the same source:
The general formula for x^2 is ((1/2)*((1 - i*sqrt(2))^(n) + (1 + i*sqrt(2))^(n)))^2
The general formula for y^2 is -1/8 ((1 + i sqrt(2))^(n + 2) - (1 - i sqrt(2))^(n + 2))^2

So no divisibility by 3 in either case.

And ((1/2)*((1 - i*sqrt(2))^(n) + (1 + i*sqrt(2))^(n)))^2+ -1/8 ((1 + i sqrt(2))^(n) - (1 - i sqrt(2))^(n))^2+-1/8 ((1 + i sqrt(2))^(n) - (1 - i sqrt(2))^(n))^2 simplifies nicely to:

(i*(sqrt(2)+-i))^n (-i*(sqrt(2)+i))^n, commonly known as 3^n


Edited on January 20, 2019, 10:54 am
  Posted by broll on 2019-01-20 10:41:26

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information