All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Shifting the digit II (Posted on 2019-03-13) Difficulty: 3 of 5
A1A2A3...An-1An/A3...An-1AnA1A2 = 12/17

What is the smallest value of n such that there exists solutions to the above equation?

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 2
Call A1A2 y, a two-digit number, and call the rest of the numerator x.

17(y*10^k + x) = 12(100x + y),  where k = n-2

17y*10^k + 17x = 1200x + 12y

(17*10^k - 12)y = 1183x

x = (17*10^k - 12)y / 1183

The following program uses this equation to demonstrate that 6 is the smallest value of n that allows a solution:

   4    kill "shiftdg2.txt":open "shiftdg2.txt" for output as #2
   5    point 255
  10    for n=3 to 100:k=n-2
  20       for y=10 to 99
  30         x = (17*10^k - 12)*y // 1183
  40         if x=int(x) and (x>0 or y>0) then
  41           :print n,y,x:ct=ct+1
  42           :print #2, n,y,x:ct=ct+1
  43           :numf=y*10^k+x:denf=100*x+y
  44           :print #2,numf,denf,numf//denf
  45           :print numf,denf,numf//denf
  49           :if ct>10 then cancel for:goto 55
  50       next y
  55       if ct>10 then cancel for:goto 70
  60    next n
  65    close #2
  70    end
  
The manually enhanced output below shows n, y and x on the first line. Division and equal signs have been added manually to show the resulting division equality  
  
 6   13   1868 
 131868 / 186813 = 12/17 

 6   26   3736 
 263736 / 373626 = 12/17 

 6   39   5604 
 395604 / 560439 = 12/17 

 6   52   7472 
 527472 / 747252 = 12/17 

 6   65   9340 
 659340 / 934065 = 12/17 
 
 plus the spurious line of output where a "carry" interferes with the digits, as x becomes larger than four digits:
 
 6   78   11208 
 791208 / 1120878   12//17 
  

  Posted by Charlie on 2019-03-13 13:30:43
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information