All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Reduced to single digit (Posted on 2019-09-06) Difficulty: 3 of 5
Suppose that we have two operations that we can perform on an integer:

Multiply it by any positive integer.
Delete the 0's in its decimal representation.

Beginning with any positive integer can we always obtain a single-digit number after a finite number of operations? For example, beginning with 7, we can multiply by 15 to obtain 105, delete the 0 to get 15, multiply by 2 to get 30, then delete the 0 to end with 3.

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
some efforts | Comment 4 of 14 |

Fun problem, no?

The answer here, I am fairly sure, is that one may always obtain a single digit. However, what follows below is anything but a rigorous proof. 

Call the “multiply and remove zeroes operation: * 

Consider all i > 10

If we can show that for all i, there is a method to chose a multiplier j such that 

i * j  <  i

or a finite set of j’s such that:

( ( ( ( i * j1 ) * j2 ) * j3 ) … ) ) )  < i 

we are done, since successive applications lead downward inexorably to a single digit. 

We can see immediately that for all even numbers, i * 5  <  i   

(i * 5 ) is half i, or less than half i if embedded zeros are removed, in addition to the trailing 0.  

Likewise, for all numbers ending in 5,  i * 2  <  i

(i * 2) is 1/5th i, or less than 1/5th i if embedded zeros are removed, in addition to the trailing 0. 

So we are left for finding a method for numbers ending in 1, 3, 7, 9. 


I divide such numbers into two groups: fruits: easy to crack, and the nuts: hard to crack. The nuts, in order, are:

       11         33         37         99        333

      597        999       3333       5997       9999

    19999      33333      39997      39999      49997

    49999      59997      59999      79999      99999

   124999     199997     199999     249999     333333

   374999     399997     399999     499997     499999

   599991     599997     599999     799999     999999

  1249999    1999997    1999999    2499999    3333333

  3749997    3749999    3999997    3999999    4999997

  4999999    5999991    5999997    5999999    6249999

  7999999    9999999   12499999   19999997   19999999

 24999999   33333333   37499997   37499999   39999997

 39999999   49999997   49999999   59999991   59999997

 59999999   62499999   79999999   99999999   .  .  .  .  

And onward…

What makes a nut a nut and fruit a fruit? For a fruit,  

there is always a single j1 or two j’s j1, j2 that makes i * j < i true.

To separate fruits from nuts I used j2 = 5 if the last digit after applying j1 was even. Else, I did not use a j2.

eg. 23

 23 * 87 = 21   (via 2001)

e.g. 19

19 * 16 = 34, 34 * 5 = 17 (via 304, 170)

The nuts are the rest, and they take more than my two steps. Here is a table of i = 11 to 99 labeling "small" on all fruits. (i * j1)* j2 < i

“done” is written when a single digit was achieved in one or two operations (for the fruit). The number of zeroes eliminated after * j1, is given as "#+", e.g., "2+" = 2 zeroes removed, and whether an even value was reached "halve" is labeled, where the half result is also given. "small" means  (i * j1) * j2 < i (so it's a fruit). The “nuts” are marked “failed”


   top? 101

   11 failed

   13 x     8 =         104         14          7  1+ zeros halve small done!

   17 x     6 =         102         12          6  1+ zeros halve small done!

   19 x    16 =         304         34         17  1+ zeros halve small      

   21 x     5 =         105         15         15  1+ zeros       small      

   23 x    87 =        2001         21         21  2+ zeros       small      

   27 x     4 =         108         18          9  1+ zeros halve small done!

   29 x     7 =         203         23         23  1+ zeros       small      

   31 x   968 =       30008         38         19  3+ zeros halve small      

       33 failed

       37 failed

   39 x    18 =         702         72         36  1+ zeros halve small      

   41 x     5 =         205         25         25  1+ zeros       small      

   43 x     7 =         301         31         31  1+ zeros       small      

   47 x    64 =        3008         38         19  2+ zeros halve small      

   49 x    41 =        2009         29         29  2+ zeros       small      

   51 x     2 =         102         12          6  1+ zeros halve small done!

   53 x     2 =         106         16          8  1+ zeros halve small done!

   57 x   158 =        9006         96         48  2+ zeros halve small      

   59 x    12 =         708         78         39  1+ zeros halve small      

   61 x     5 =         305         35         35  1+ zeros       small      

   63 x     8 =         504         54         27  1+ zeros halve small      

   67 x     3 =         201         21         21  1+ zeros       small      

   69 x     3 =         207         27         27  1+ zeros       small      

   71 x   986 =       70006         76         38  3+ zeros halve small      

   73 x    14 =        1022        122         61  1+ zeros halve small      

   77 x     4 =         308         38         19  1+ zeros halve small      

   79 x    14 =        1106        116         58  1+ zeros halve small      

   81 x     5 =         405         45         45  1+ zeros       small      

   83 x   241 =       20003         23         23  3+ zeros       small      

   87 x     7 =         609         69         69  1+ zeros       small      

   89 x     9 =         801         81         81  1+ zeros       small      

   91 x    11 =        1001         11         11  2+ zeros       small      

   93 x    14 =        1302        132         66  1+ zeros halve small      

   97 x    31 =        3007         37         37  2+ zeros       small      

       99 failed

  101 x     1 =         101         11         11  1+ zeros       small 

But the nuts can be cracked (although my proof is hand-wavy). 

Take, for example 11:

(((11 * 9546) * 5) * 18) * 625 = 9

or 5997

(((((5997 * 968) * 35) * 155) * 5176) *3876) * 5 = 9

or take 9999:

((((9999 * 92) * 49) * 625) * 7) * 6 = 9 

also 

I have been able to crack all nuts i have tried, going to 18 sig digs.

My method is to multiply up, both losing a few zeros, and landing some even digits. Then multiplying this time going down while again losing zeros. 

So what is going on here? I am not sure.

The nuts are numbers containing digits like “9”. A number like 9999, multiplied by any number, rarely yields zeroes. Why? - that is the question!

The way to “crack nuts” is to make larger products going up in total digits which can then be worked downward to the lower digits and generate the needed “0” sums for reduction. It is all empirical at this point, but it works.   

One of the programs (not the 64 bit one) is here and an example run is here)

Since the solution is "in the queue" I'll bet there is an analytic proof. Also, I wonder if this might be more easily proven in base 2, and then generalized...  And I wonder if there are possible applications to binary security keys... 

That’s it for now! 

Edited on September 11, 2019, 3:13 pm
  Posted by Steven Lord on 2019-09-10 13:12:56

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information