All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Can we use Pigeonhole? (Posted on 2019-11-26) Difficulty: 3 of 5
Is there a positive integer divisible by 2018 which only consists of the digits 3 and 0 (in base 10)?

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution my solution -- without pigeonhole -- including lowest such number | Comment 2 of 3 |
2018 is not divisible by 3, so we first need a number consisting of just 1's and 0's, and multiply it by 3.

If we find separate powers of ten that add up to 0 (congruent to 2018) mod 2018 we can form such a number.

10^n mod 2018 takes on 252 values, among which for example are 4 at n=241 and 2014 at n=114.  So 10^114 + 10^241 is congruent to 2018 modulo 2018 (i.e., congruent to zero) and is thus divisible by 2018 and consists only of 1's and 0's as it is two distinct pure powers of ten.  Multiply it by 3 and you get a multiple of 2018 that consists solely of 3's and 0's. This settles the existence question asked by the puzzle: Yes.

There are probably ways of combining more than just two powers of ten so that the highest power need not be as large as 241, and thus having a shorter length as well as a better balance between 3's and zeros. (After further consideration: I've done this below.)

Using the computer here's a table of available values mod 2018 with the appropriate power of 10:

value  power of 10
  10     1
 100     2
1000     3
1928     4
1118     5
1090     6
 810     7
  28     8
 280     9
 782    10
1766    11
1516    12
1034    13
 250    14
 482    15
 784    16
1786    17
1716    18
1016    19
  70    20
 700    21
 946    22
1388    23
1772    24
1576    25
1634    26
 196    27
1960    28
1438    29
 254    30
 522    31
1184    32
1750    33
1356    34
1452    35
 394    36
1922    37
1058    38
 490    39
 864    40
 568    41
1644    42
 296    43
 942    44
1348    45
1372    46
1612    47
1994    48
1778    49
1636    50
 216    51
 142    52
1420    53
  74    54
 740    55
1346    56
1352    57
1412    58
2012    59
1958    60
1418    61
  54    62
 540    63
1364    64
1532    65
1194    66
1850    67
 338    68
1362    69
1512    70
 994    71
1868    72
 518    73
1144    74
1350    75
1392    76
1812    77
1976    78
1598    79
1854    80
 378    81
1762    82
1476    83
 634    84
 286    85
 842    86
 348    87
1462    88
 494    89
 904    90
 968    91
1608    92
1954    93
1378    94
1672    95
 576    96
1724    97
1096    98
 870    99
 628   100
 226   101
 242   102
 402   103
2002   104
1858   105
 418   106
 144   107
1440   108
 274   109
 722   110
1166   111
1570   112
1574   113
1614   114
2014   115
1978   116
1618   117
  36   118
 360   119
1582   120
1694   121
 796   122
1906   123
 898   124
 908   125
1008   126
2008   127
1918   128
1018   129
  90   130
 900   131
 928   132
1208   133
1990   134
1738   135
1236   136
 252   137
 502   138
 984   139
1768   140
1536   141
1234   142
 232   143
 302   144
1002   145
1948   146
1318   147
1072   148
 630   149
 246   150
 442   151
 384   152
1822   153
  58   154
 580   155
1764   156
1496   157
 834   158
 268   159
 662   160
 566   161
1624   162
  96   163
 960   164
1528   165
1154   166
1450   167
 374   168
1722   169
1076   170
 670   171
 646   172
 406   173
  24   174
 240   175
 382   176
1802   177
1876   178
 598   179
1944   180
1278   181
 672   182
 666   183
 606   184
   6   185
  60   186
 600   187
1964   188
1478   189
 654   190
 486   191
 824   192
 168   193
1680   194
 656   195
 506   196
1024   197
 150   198
1500   199
 874   200
 668   201
 626   202
 206   203
  42   204
 420   205
 164   206
1640   207
 256   208
 542   209
1384   210
1732   211
1176   212
1670   213
 556   214
1524   215
1114   216
1050   217
 410   218
  64   219
 640   220
 346   221
1442   222
 294   223
 922   224
1148   225
1390   226
1792   227
1776   228
1616   229
  16   230
 160   231
1600   232
1874   233
 578   234
1744   235
1296   236
 852   237
 448   238
 444   239
 404   240
   4   241
  40   242
 400   243
1982   244
1658   245
 436   246
 324   247
1222   248
 112   249
1120   250
1110   251
1010   252

The shortest seems to be from

 10+100+1118+28+280+482,
 
using the powers  of 10: 1, 2, 5, 8, 9 and 15; that number is of course written as

1000001100100110   =  495540683895 * 2018

Then of course 3 times that number is

3000003300300330

and this should be the shortest way as the program snippet below was used to try all combinations drawn from the first 26 powers of 10 (zero through 25):

 avail = Array(1, 10, 100, 1000, 1928, 1118, 1090, 810, 28, 280, 782, 1766, 1516, 1034, 250, 482, 784, 1786, 1716, 1016, 70, 700, 946, 1388, 1772, 1576)

 
 addon 0
 
 
Sub addon(wh)
  For incl = 0 To 1
    If incl = 0 Then
      If wh < 25 Then addon wh + 1
    Else
      tot = tot + avail(wh)
      list(0) = list(0) + 1
      list(list(0)) = avail(wh)
      listix(list(0)) = wh
      
      If tot < 2018 Then
         If wh < 25 Then addon wh + 1
      ElseIf tot = 2018 Then
         For i = 1 To list(0)
           Text1.Text = Text1.Text & Str(list(i)) & Str(listix(i)) & ", "
         Next
         Text1.Text = Text1.Text & Str(wh) & crlf
      End If
      
      tot = tot - avail(wh)
      list(0) = list(0) - 1
    End If
  Next
End Sub


This program shows that the only sums available (i.e., adding to 2018) from the first 26 powers of 10 are (listing the addends, with respective powers of ten, followed by the highest power of 10 used):

 100 2,  280 9,  250 14,  1388 23,               23
 10 1,  280 9,  782 10,  946 22,                 22
 10 1,  28 8,  250 14,  784 16,  946 22,         22
 10 1,  28 8,  1034 13,  946 22,                 22
 10 1,  1000 3,  28 8,  280 9,  700 21,          21
 10 1,  100 2,  1118 5,  28 8,  280 9,  482 15,  15
 10 1,  100 2,  1000 3,  810 7,  28 8,  70 20,   20

The lowest high power of 10 is 15, leading to the 16-digit answer shown above.

  Posted by Charlie on 2019-11-26 11:29:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information