All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
Skyscrapers 2 (Posted on 2020-01-27) Difficulty: 3 of 5
You are looking down at a map of a 5x5 block area of a city where each block is occupied by one skyscraper. Call the heights 1, 2, 3, 4 and 5 (say they are in 10-story increments). Each row has one of each height and each column also has one of each height.

Considering that when viewed from outside the row or column, the nearer buildings of taller height hide those behind them that are of shorter height, numbers have been placed in the yellow areas pointing to a given row or column. Each number represents the number of buildings that can be seen from that vantage point when looking at the row or column in question.

Fill in each block's height.

←3
4→
3→ ←3
4→

4

3

From Mensa Puzzle Calendar 2019 by Fraser Simpson, Workman Publishing, New York. Puzzle for December 9.

See The Solution Submitted by Charlie    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
soln | Comment 1 of 5

There are 10 different types of streets that have 4 buildings visible when viewed from the left end

21345, 23145, 23415, 23451, 13245, 13425, 13452, 12435, 12453, 12354.


There are only 2 streets that have 3 visible when viewed from both ends:

12534 and 34521


But there are 35 street that have 3 visible from the left!


I was able to figure all the  possible arrangements for the first two groups, but choosing the right 3-streets proved onerous for me, so I wrote a program.  


lord@rabbit-3 ~ % city 

 success!


4 5 3 1 2

1 2 4 5 3

3 4 5 2 1

2 3 1 4 5

5 1 2 3 4


        program city

        implicit none

        integer i(5),i1,i2,i3,i4,i5,j3(5,35),jn3(5,35),j33(5,2),j4(5,10),

        1 jc3,jc33,jc4,v,vv,j,jb,kk,k,k2,a,b,c,d,e,f,n(5,5),ksec,kfir,

        2 kcol,kkcol,kkrow

        equivalence (i1,i(1)),(i2,i(2)),(i3,i(3)),(i4,i(4)),(i5,i(5))

        data jc3,jc33,jc4/3*0/,j33/1,2,5,4,3,3,4,5,2,1/


        do 1 i1=1,5

c       print*,'i1 = ',i1

        do 2 i2=1,5

c       print*,'i1, i2 = ',i1,i2

        if(i1.eq.i2)go to 2

        do 3 i3=1,5

        if(i1.eq.i3.or.i2.eq.i3)go to 3

        do 4 i4=1,5

        if(i1.eq.i4.or.i2.eq.i4.or.i3.eq.i4)go to 4

        do 5 i5=1,5

        if(i1.eq.i5.or.i2.eq.i5.or.i3.eq.i5.or.i4.eq.i5)go to 5


        v=1

        do j=2,5

        do jb=1,j-1

        if(i(j).lt.i(jb))go to 6

        enddo

        v=v+1

6       enddo

c

c find the 3 streets j3, the backward 3 streets 3nj, double 3 st.s j33

c and the 4 streets j4  

c

        if(v.eq.3)then

        jc3=jc3+1

        do k=1,5

        j3(k,jc3)=i(k)

        jn3(k,jc3)=i(6-k)

        enddo

        endif


        if(v.eq.4)then

        jc4=jc4+1

        do k=1,5

        j4(k,jc4)=i(k)

        enddo   

        endif

                

5       enddo

4       enddo

3       enddo

2       enddo

1       enddo


        do 101  a=1,10

        do 102 b=1,2

        do 103 c=1,10

        if(a.eq.c)go to 103

        do 104 d=1,10

        do 105 e=1,35

        do 106 f=1,35

        if ( (jn3(4,f).eq.j3(5,e)).and.

        2    (j4(2,a).eq.j4(4,d)).and.

        3    (j4(4,a).eq.j3(4,e)).and.

        4    (j33(2,b).eq.j4(3,d)).and.

        5    (j33(4,b).eq.j3(3,e)).and.

        6    (j4(2,c).eq.j4(2,d)).and.

        7    (j4(4,c).eq.j3(2,e)) ) then


        do kk=1,5

        n(1,kk)=jn3(kk,f)

        n(2,kk)=j4(kk,a)

        n(3,kk)=j33(kk,b)

        n(4,kk)=j4(kk,c)

        enddo

        n(5,1)=15-(n(1,1)+n(2,1)+n(3,1)+n(4,1))

        n(5,2)=j4(1,d)

        n(5,3)=15-(n(1,3)+n(2,3)+n(3,3)+n(4,3))

        n(5,4)=j3(1,e)

        n(5,5)=15-(n(1,5)+n(2,5)+n(3,5)+n(4,5))


        do ksec=2,5

        do kfir=1,ksec-1

        do   kcol=1,5

        if (n(kfir,kcol).eq.n(ksec,kcol))go to 400

        enddo

        enddo

        enddo

        print*,'success!'

        print*

        print 50,((n(kkrow,kkcol),kkcol=1,5),kkrow=1,5)

50      format(5(i1,1x))


400     continue


        endif


106     enddo

105     enddo

104     enddo

103     enddo

102     enddo

101     enddo

        end

Edited on January 27, 2020, 10:53 am
  Posted by Steven Lord on 2020-01-27 10:52:25

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information