All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Average other (Posted on 2020-07-01) Difficulty: 3 of 5
Each member of a group of 37 students was sent to one of three rooms.

Later, each was asked "How many other students were in your room?" The average of these responses was 12.

How is this possible?

No Solution Yet Submitted by Jer    
Rating: 4.0000 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 4 of 6 |
DefDbl A-Z
Dim crlf$
 

Private Sub Form_Load()
 Text1.Text = ""
 crlf$ = Chr(13) + Chr(10)
 Form1.Visible = True
  
 For a = 0 To 12
 For b = a To (37 - a) / 2
   c = 37 - a - b
   avge = (a * a + b * b + c * c) / (a + b + c)
   DoEvents
   Text1.Text = Text1.Text & mform(a, "##0") & mform(b, "##0") & mform(c, "##0") & "   " & avge & crlf
   'If avge = 13 Then Text1.Text = Text1.Text & a & Str(b) & Str(c) & crlf
 Next
 Next
  
  Text1.Text = Text1.Text & " done"
  DoEvents

End Sub

Function mform$(x, t$)
  a$ = Format$(x, t$)
  If Len(a$) < Len(t$) Then a$ = Space$(Len(t$) - Len(a$)) & a$
  mform$ = a$
End Function

finds all the possible distributions with their respective averages of total numbers of students:

  0  0 37   37
  0  1 36   35.0540540540541
  0  2 35   33.2162162162162
  0  3 34   31.4864864864865
  0  4 33   29.8648648648649
  0  5 32   28.3513513513514
  0  6 31   26.9459459459459
  0  7 30   25.6486486486486
  0  8 29   24.4594594594595
  0  9 28   23.3783783783784
  0 10 27   22.4054054054054
  0 11 26   21.5405405405405
  0 12 25   20.7837837837838
  0 13 24   20.1351351351351
  0 14 23   19.5945945945946
  0 15 22   19.1621621621622
  0 16 21   18.8378378378378
  0 17 20   18.6216216216216
  0 18 19   18.5135135135135
  1  1 35   33.1621621621622
  1  2 34   31.3783783783784
  1  3 33   29.7027027027027
  1  4 32   28.1351351351351
  1  5 31   26.6756756756757
  1  6 30   25.3243243243243
  1  7 29   24.0810810810811
  1  8 28   22.9459459459459
  1  9 27   21.9189189189189
  1 10 26   21
  1 11 25   20.1891891891892
  1 12 24   19.4864864864865
  1 13 23   18.8918918918919
  1 14 22   18.4054054054054
  1 15 21   18.027027027027
  1 16 20   17.7567567567568
  1 17 19   17.5945945945946
  1 18 18   17.5405405405405
  2  2 33   29.6486486486486
  2  3 32   28.027027027027
  2  4 31   26.5135135135135
  2  5 30   25.1081081081081
  2  6 29   23.8108108108108
  2  7 28   22.6216216216216
  2  8 27   21.5405405405405
  2  9 26   20.5675675675676
  2 10 25   19.7027027027027
  2 11 24   18.9459459459459
  2 12 23   18.2972972972973
  2 13 22   17.7567567567568
  2 14 21   17.3243243243243
  2 15 20   17
  2 16 19   16.7837837837838
  2 17 18   16.6756756756757
  3  3 31   26.4594594594595
  3  4 30   25
  3  5 29   23.6486486486486
  3  6 28   22.4054054054054
  3  7 27   21.2702702702703
  3  8 26   20.2432432432432
  3  9 25   19.3243243243243
  3 10 24   18.5135135135135
  3 11 23   17.8108108108108
  3 12 22   17.2162162162162
  3 13 21   16.7297297297297
  3 14 20   16.3513513513514
  3 15 19   16.0810810810811
  3 16 18   15.9189189189189
  3 17 17   15.8648648648649
  4  4 29   23.5945945945946
  4  5 28   22.2972972972973
  4  6 27   21.1081081081081
  4  7 26   20.027027027027
  4  8 25   19.0540540540541
  4  9 24   18.1891891891892
  4 10 23   17.4324324324324
  4 11 22   16.7837837837838
  4 12 21   16.2432432432432
  4 13 20   15.8108108108108
  4 14 19   15.4864864864865
  4 15 18   15.2702702702703
  4 16 17   15.1621621621622
  5  5 27   21.0540540540541
  5  6 26   19.9189189189189
  5  7 25   18.8918918918919
  5  8 24   17.972972972973
  5  9 23   17.1621621621622
  5 10 22   16.4594594594595
  5 11 21   15.8648648648649
  5 12 20   15.3783783783784
  5 13 19   15
  5 14 18   14.7297297297297
  5 15 17   14.5675675675676
  5 16 16   14.5135135135135
  6  6 25   18.8378378378378
  6  7 24   17.8648648648649
  6  8 23   17
  6  9 22   16.2432432432432
  6 10 21   15.5945945945946
  6 11 20   15.0540540540541
  6 12 19   14.6216216216216
  6 13 18   14.2972972972973
  6 14 17   14.0810810810811
  6 15 16   13.972972972973
  7  7 23   16.9459459459459
  7  8 22   16.1351351351351
  7  9 21   15.4324324324324
  7 10 20   14.8378378378378
  7 11 19   14.3513513513514
  7 12 18   13.972972972973
  7 13 17   13.7027027027027
  7 14 16   13.5405405405405
  7 15 15   13.4864864864865
  8  8 21   15.3783783783784
  8  9 20   14.7297297297297
  8 10 19   14.1891891891892
  8 11 18   13.7567567567568
  8 12 17   13.4324324324324
  8 13 16   13.2162162162162
  8 14 15   13.1081081081081
  9  9 19   14.1351351351351
  9 10 18   13.6486486486486
  9 11 17   13.2702702702703
  9 12 16   13
  9 13 15   12.8378378378378
  9 14 14   12.7837837837838
 10 10 17   13.2162162162162
 10 11 16   12.8918918918919
 10 12 15   12.6756756756757
 10 13 14   12.5675675675676
 11 11 15   12.6216216216216
 11 12 14   12.4594594594595
 11 13 13   12.4054054054054
 12 12 13   12.3513513513514

13 is the smallest integral average achievable, with 9, 12 and 16 students in each class, the 13 including the student asked, and this distribution being the sought way that this could happen.


Edited on July 21, 2020, 7:34 am
  Posted by Charlie on 2020-07-01 18:55:33

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information