Let's start with a triplet of integers, say (1, 2, 5) and a set of mathematical operations (+, -, *, /, ^, sqrt, fact!, concatenation, brackets).
Our task will be to represent all (or almost all - as explained below) integers from 1 to n using some or all of the initial triplet and any quantity of operations defined above.
So:
1=1
6=1+5
9=5*2-1
13=15-2
27=51-4!
60=12*5 etc
Let's define n as the first occurrence of not being able to find a valid representation for n+1 and for n+2. I believe that in our case n=17 (15+2), since neither 18 nor 19 get valid solutions.
You are requested to find a triplet of integers (a,b,c) enabling a maximal n.
Using 4, 9 and 9:
RPN Algebraic
1 9,9/ 9/9
2 4v sqrt(4)
3 9v sqrt(9)
4 49v,9+v sqrt((sqrt(49)+9))
5 9,4- 9-4
6 9v! (sqrt(9))!
7 49v sqrt(49)
8 4,9v^v sqrt(4^sqrt(9))
9 9,9*v sqrt((9*9))
10 4,9v!+ 4+(sqrt(9))!
11 4v,9+ sqrt(4)+9
12 4,9v* 4*sqrt(9)
13 4,9+ 4+9
14 9,4-,9+ 9-4+9
15 4!,9- (4)!-9
16 49v,9+ sqrt(49)+9
17 4,9v^v,9+ sqrt(4^sqrt(9))+9
18 9,9+ 9+9
19 4,9+,9v!+ 4+9+(sqrt(9))!
20 4v,9+,9+ sqrt(4)+9+9
21 49,9*v sqrt((49*9))
22 4,9+,9+ 4+9+9
23 4!,9,9/- (4)!-9/9
24 4! (4)!
25 4!,9,9/+ (4)!+9/9
26 4!,9v!,9v/+ (4)!+(sqrt(9))!/sqrt(9)
27 9,9v* 9*sqrt(9)
28 4,9v^,9v!!+v sqrt((4^sqrt(9)+((sqrt(9))!)!))
29 4v,9,9v*+ sqrt(4)+9*sqrt(9)
30 4!,9v!+ (4)!+(sqrt(9))!
31 4,9,9v*+ 4+9*sqrt(9)
32 9v!,9v!*,4- (sqrt(9))!*(sqrt(9))!-4
33 4!,9+ (4)!+9
34 9v!,9v!*,4v- (sqrt(9))!*(sqrt(9))!-sqrt(4)
35
36 4,9* 4*9
37
38 4v,9v!,9v!*+ sqrt(4)+(sqrt(9))!*(sqrt(9))!
39 4,9+,9v* (4+9)*sqrt(9)
40 49,9- 49-9
41
42 49v,9v!* sqrt(49)*(sqrt(9))!
43 49,9v!- 49-(sqrt(9))!
44
45 4,9*,9+ 4*9+9
46 49,9v- 49-sqrt(9)
47
48 4,9,9v+* 4*(9+sqrt(9))
49 49 49
50 9,9v!*,4- 9*(sqrt(9))!-4
51 4!,9,9v*+ (4)!+9*sqrt(9)
52 49,9v+ 49+sqrt(9)
53
54 9,9v!* 9*(sqrt(9))!
55 49,9v!+ 49+(sqrt(9))!
56 4v,9,9v!*+ sqrt(4)+9*(sqrt(9))!
57 9,9*,4!- 9*9-(4)!
58 49,9+ 49+9
59
60 4,9,9v!+* 4*(9+(sqrt(9))!)
61 4,9v^,9v- 4^sqrt(9)-sqrt(9)
62
63 49v,9* sqrt(49)*9
64 4,9v^ 4^sqrt(9)
65
66 4v,9+,9v!* (sqrt(4)+9)*(sqrt(9))!
67 4,9v^,9v+ 4^sqrt(9)+sqrt(9)
68
69 4!,9v*,9v- (4)!*sqrt(9)-sqrt(9)
70 4,9v^,9v!+ 4^sqrt(9)+(sqrt(9))!
71
72 4!,9v* (4)!*sqrt(9)
73 4,9v^,9+ 4^sqrt(9)+9
74
75 99,4!- 99-(4)!
76 9v!!,9/,4- ((sqrt(9))!)!/9-4
77 9,9*,4- 9*9-4
78 4,9+,9v!* (4+9)*(sqrt(9))!
79 9,9*,4v- 9*9-sqrt(4)
80 9v!!,9/ ((sqrt(9))!)!/9
81 9,9* 9*9
82 4v,9v!!,9/+ sqrt(4)+((sqrt(9))!)!/9
83 4v,9,9*+ sqrt(4)+9*9
84 9,4^v,9v+ sqrt(9^4)+sqrt(9)
85 94,9- 94-9
86
87 9,4^v,9v!+ sqrt(9^4)+(sqrt(9))!
88 94,9v!- 94-(sqrt(9))!
89
90 9,4^v,9+ sqrt(9^4)+9
91 94,9v- 94-sqrt(9)
92
93
|
Posted by Charlie
on 2020-09-10 15:17:37 |