All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
50 - or more (Posted on 2020-09-10) Difficulty: 4 of 5
Let's start with a triplet of integers, say (1, 2, 5) and a set of mathematical operations (+, -, *, /, ^, sqrt, fact!, concatenation, brackets).

Our task will be to represent all (or almost all - as explained below) integers from 1 to n using some or all of the initial triplet and any quantity of operations defined above.

So:
1=1
6=1+5
9=5*2-1
13=15-2
27=51-4!
60=12*5 etc

Let's define n as the first occurrence of not being able to find a valid representation for n+1 and for n+2. I believe that in our case n=17 (15+2), since neither 18 nor 19 get valid solutions.

You are requested to find a triplet of integers (a,b,c) enabling a maximal n.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re(3): Record Comment 14 of 14 |
(In reply to re(2): Record by Dej Mar)

Indeed, all the "outside the box" thinking that's possible seems to make moot the request for a maximal value.


While the letter of the puzzle stated "integers", the spirit (given in the example)-- three examples in fact--three "integers", were all single digits. The only concatenation in the examples was of pure unmodified digits. No subfactiorials or multifactorials were in the examples, and no use of square brackets to indicate floor.

  Posted by Charlie on 2020-09-17 07:11:11
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information