All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Dissecting into rectangles (Posted on 2020-09-30) Difficulty: 2 of 5
Determine all integers m for which a square of length m can be dissected into five rectangles, the side lengths of which are the integers 1,2,3,...,10 in some order.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
solution (take two) | Comment 4 of 6 |

The previous post should be ignored. It would neither fully upload nor delete. :-(

 

There are many candidate solutions where the ariel sum of 5 pieces add to a square: 14 candidates for 121; 9 for 144; and 12 for 169. Of these, only two for area 121 and two for area 169 can be fit together into a square. Note, any one map is one of eight rotations and/or reflections. The candidates and the 4 solution maps are shown below. The program is shown here.



 area = 121 index =  1 ( 1, 6) ( 2, 9) ( 3,10) ( 4, 8) ( 5, 7)

 area = 121 index =  2 ( 1, 6) ( 2,10) ( 3, 8) ( 4, 9) ( 5, 7)

*area = 121 index =  3 ( 1, 6) ( 2,10) ( 3, 9) ( 4, 7) ( 5, 8)

 area = 121 index =  4 ( 1, 7) ( 2,10) ( 3, 6) ( 4, 9) ( 5, 8)

 area = 121 index =  5 ( 1, 8) ( 2, 6) ( 3,10) ( 4, 9) ( 5, 7)

 area = 121 index =  6 ( 1, 8) ( 2, 7) ( 3,10) ( 4, 6) ( 5, 9)

 area = 121 index =  7 ( 1, 8) ( 2, 9) ( 3, 7) ( 4, 6) ( 5,10)

 area = 121 index =  8 ( 1, 8) ( 2,10) ( 3, 5) ( 4, 9) ( 6, 7)

 area = 121 index =  9 ( 1, 9) ( 2, 7) ( 3, 6) ( 4,10) ( 5, 8)

 area = 121 index = 10 ( 1, 9) ( 2, 7) ( 3, 8) ( 4, 6) ( 5,10)

 area = 121 index = 11 ( 1, 9) ( 2, 7) ( 3,10) ( 4, 5) ( 6, 8)

*area = 121 index = 12 ( 1, 9) ( 2, 8) ( 3, 6) ( 4, 7) ( 5,10)

 area = 121 index = 13 ( 1,10) ( 2, 5) ( 3, 9) ( 4, 8) ( 6, 7)

 area = 121 index = 14 ( 1,10) ( 2, 8) ( 3, 7) ( 4, 5) ( 6, 9)


 area = 144 index =  1 ( 1, 3) ( 2, 9) ( 4,10) ( 5, 7) ( 6, 8)

 area = 144 index =  2 ( 1, 3) ( 2,10) ( 4, 7) ( 5, 9) ( 6, 8)

 area = 144 index =  3 ( 1, 3) ( 2,10) ( 4, 8) ( 5, 7) ( 6, 9)

 area = 144 index =  4 ( 1, 5) ( 2, 6) ( 3, 8) ( 4,10) ( 7, 9)

 area = 144 index =  5 ( 1, 7) ( 2, 4) ( 3, 8) ( 5, 9) ( 6,10)

 area = 144 index =  6 ( 1, 7) ( 2, 9) ( 3, 5) ( 4, 6) ( 8,10)

 area = 144 index =  7 ( 1, 9) ( 2, 5) ( 3, 7) ( 4, 6) ( 8,10)

 area = 144 index =  8 ( 1, 9) ( 2, 6) ( 3, 5) ( 4, 7) ( 8,10)

 area = 144 index =  9 ( 1,10) ( 2, 4) ( 3, 5) ( 6, 8) ( 7, 9)


 area = 169 index =  1 ( 1, 2) ( 3, 5) ( 4, 9) ( 6,10) ( 7, 8)

*area = 169 index =  2 ( 1, 2) ( 3, 7) ( 4, 6) ( 5,10) ( 8, 9)

 area = 169 index =  3 ( 1, 2) ( 3, 7) ( 4, 9) ( 5, 6) ( 8,10)

*area = 169 index =  4 ( 1, 2) ( 3, 8) ( 4, 5) ( 6,10) ( 7, 9)

 area = 169 index =  5 ( 1, 3) ( 2, 5) ( 4, 8) ( 6, 9) ( 7,10)

 area = 169 index =  6 ( 1, 3) ( 2, 7) ( 4, 5) ( 6,10) ( 8, 9)

 area = 169 index =  7 ( 1, 3) ( 2, 7) ( 4, 8) ( 5, 6) ( 9,10)

 area = 169 index =  8 ( 1, 4) ( 2, 5) ( 3, 7) ( 6, 9) ( 8,10)

 area = 169 index =  9 ( 1, 5) ( 2, 3) ( 4, 9) ( 6, 7) ( 8,10)

 area = 169 index = 10 ( 1, 5) ( 2, 4) ( 3, 8) ( 6, 7) ( 9,10)

 area = 169 index = 11 ( 1, 5) ( 2, 7) ( 3, 4) ( 6, 8) ( 9,10)

 area = 169 index = 12 ( 1, 6) ( 2, 3) ( 4, 8) ( 5, 7) ( 9,10)


* = solutions


121 combo  3 of 14, 5-order =   3 of 120 orient = 19 of 32

1:( 1, 6) 2:(10, 2) 3:( 7, 4) 4:( 3, 9) 5:( 8, 5)

12222222222

12222222222

13333333444

13333333444

13333333444

13333333444

55555555444

55555555444

55555555444

55555555444

55555555444


121 combo 12 of 14, 5-order =   6 of 120 orient = 15 of 32

1:( 9, 1) 2:( 2, 8) 3:( 5,10) 4:( 4, 7) 5:( 6, 3)

11111111122

33333444422

33333444422

33333444422

33333444422

33333444422

33333444422

33333444422

33333555555

33333555555

33333555555


169 combo  2 of 12, 5-order =  33 of 120 orient =  6 of 32

1:( 7, 3) 2:( 6, 4) 3:( 5,10) 4:( 2, 1) 5:( 8, 9)

1111111222222

1111111222222

1111111222222

3333344222222

3333355555555

3333355555555

3333355555555

3333355555555

3333355555555

3333355555555

3333355555555

3333355555555

3333355555555


169 combo  4 of 12, 5-order =  33 of 120 orient =  6 of 32

1:( 8, 3) 2:( 5, 4) 3:( 6,10) 4:( 2, 1) 5:( 7, 9)

1111111122222

1111111122222

1111111122222

3333334422222

3333335555555

3333335555555

3333335555555

3333335555555

3333335555555

3333335555555

3333335555555

3333335555555

3333335555555

lord@rabbit-3 pid12125 %


Note in passing - I modified this code to solve the similar problem of rectangles of sides (1,2,3,...,8) and also (1,2,3,...,12). While there were many candidates for m=8,9,10 and m=14,15,16,17 respectively, there were no solutions. 

Edited on October 4, 2020, 2:35 pm
  Posted by Steven Lord on 2020-10-03 15:07:42

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information