All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
2 absent digits (Posted on 2020-11-28) Difficulty: 2 of 5
The product of 722*227 (163,894) contains neither 2 nor 7. List all the couples (b,c; b>c) such that the product bcc*ccb contains neither b nor c. Bonus: From the above list select couples, if any, using none of the corresponding digits in the partial products as well.

No Solution Yet Submitted by Ady TZIDON    
Rating: 2.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution with an extension | Comment 3 of 6 |
for c=1:8
    for b=c+1:9
        bcc=100*b+11*c;
        ccb=110*c+b;
        p=num2str(bcc*ccb);
        good=true;
        for i=1:strlength(p)
            if str2num(p(i))==b || str2num(p(i))==c
                good=false;
                break
            end
        end
        if good
            disp([c b bcc ccb bcc*ccb])
        end
    end
end
disp(" ")
for b=1:8
    for c=b+1:9
        bcc=100*b+11*c;
        ccb=110*c+b;
        p=num2str(bcc*ccb);
        good=true;
        for i=1:strlength(p)
            if str2num(p(i))==b || str2num(p(i))==c
                good=false;
                break
            end
        end
        if good
            disp([c b bcc ccb bcc*ccb])
        end
    end
end

For problem as presented:

c  b    bcc   cbb     bcc*cbb
2  3    322   223       71806
2  7    722   227      163894
4  7    744   447      332568
5  8    855   558      477090
6  7    766   667      510922

For c>b (not in original problem):

5  2    255   552      140760
7  3    377   773      291421
7  4    477   774      369198
7  6    677   776      525352


  Posted by Charlie on 2020-11-28 12:30:37
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information