All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
Seven (Posted on 2021-08-15) Difficulty: 2 of 5
1, 7, 8, 49, 50…
The above sequence consists of positive integers each being a sum of distinct non-negative integer powers of 7 presented in strictly increasing order.

If a(0)=1 and a(1)=7, what is a(111)?

No Solution Yet Submitted by Ady TZIDON    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 2 of 2 |
clearvars, clc
global p7 highest set tots
for i=1:10
   p7(i)=7^i 
end
highest=7;

set=[1]; tots=[];
addon(1)
 %  tots=sort(tots)
set=[];
addon(1);
tots=sort(tots)

function  addon(wh)
global p7 highest set tots
    
   for i=0:1
      if i==1
         set=[set p7(wh)]; 
      end
      if wh==highest
         tots=[tots sum(set)];
      else
         addon(wh+1) 
      end
      if i==1
         set=set(1:end-1);
      end
      
   end 
    
end

The program shows first 71^1 through 7^10:

  Columns 1 through 10
           7          49         343        2401       16807      117649      823543     5764801    40353607
  Column 10
   282475249
   
but it uses only up through 7^7.

The various totals in which every of the powers of 7 through 7^7 is used or not used, in any combination, but this includes not having any of them, and thus the 0 at the beginning of the list below. MATLAB is 1-based so all subscripts begin at 1. That required programming two parts: one for including 1 in all the totals and one for excluding the 1 from all totals. They were sorted together after the completion of both parts.

Notice 1 appears in subscript 2 (column in MATLAB speak, as it considers the set a 1-row matrix), rather than subscript 0. So a(111) will be found in column 113.
   
   
tots =
  Columns 1 through 9
           0           1       7        8       49      50      56      57     343
  Columns 10 through 18
         344         350     351      392      393     399     400    2401    2402
  Columns 19 through 27
        2408        2409    2450     2451     2457    2458    2744    2745    2751
  Columns 28 through 36
        2752        2793    2794     2800     2801   16807   16808   16814   16815
  Columns 37 through 45
       16856       16857   16863    16864    17150   17151   17157   17158   17199
  Columns 46 through 54
       17200       17206   17207    19208    19209   19215   19216   19257   19258
  Columns 55 through 63
       19264       19265   19551    19552    19558   19559   19600   19601   19607
  Columns 64 through 72
       19608      117649  117650   117656   117657  117698  117699  117705  117706
  Columns 73 through 81
      117992      117993  117999   118000   118041  118042  118048  118049  120050
  Columns 82 through 90
      120051      120057  120058   120099   120100  120106  120107  120393  120394
  Columns 91 through 99
      120400      120401  120442   120443   120449  120450  134456  134457  134463
  Columns 100 through 108
      134464      134505  134506   134512   134513  134799  134800  134806  134807
  Columns 109 through 117
      134848      134849  134855   134856   136857  136858  136864  136865  136906
      
Column 113 (a(111)) is 136,857.  This is smaller than 7^8=5,764,801 so the count is unaffected by excluding powers of 7 greater than 7^7.

There are no duplicates so that doesn't affect the numbering either.

  Posted by Charlie on 2021-08-16 09:32:52
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information