All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Factorion plus one: Factoritwo (Posted on 2021-12-16) Difficulty: 3 of 5
A Factorion is a number that equals the sum of the factorials of its decimal digits, e.g. 145 is a factorion because 1! + 4! + 5! = 1 + 24 + 120 = 145.
There are only 4 base 10 Factorions. A prior Perplexus problem, Factorials & factorions, asked you to find the fourth and largest one.

A "Factoritwo" is a base 10 integer such that the integer is equal to the sum of factorials of one greater than each digit.
For example, if we were checking 145 we calculate 2! + 5! + 6! which of course is not 145.

What is the smallest Factoritwo?

See The Solution Submitted by Larry    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution Comment 2 of 2 |
The short story: As mentioned below, the smallest (and only) factoritwo is 3679464.

for n=1000000:3000000
   s=num2str(n);
   tot=0;
   for i=1:length(s)
      tot=tot+factorial(str2double(s(i))+1); 
   end
   if tot==n
      disp(n); 
   end
end

found nothing, so, figuring it needed to go higher, I switched strategies. Instead of testing each number, I'd test combinations of digits. That would go faster, as 213457 and 719 others would be in the batch considered as 123457 where the total 2+6+24+120+720+40320 = 41192 does not consist of those digits. The sum of the incremented factorials of those digits would be tested to see if it matched the numbers. I'd allow for eight-digit numbers:

for i=1:10
   f(i)=factorial(i); 
end
for zeros=0:8
    z=repmat('0',1,zeros);
    for ones=0:8-zeros
        o=repmat('1',1,ones);
        for twos=0:8-zeros-ones
            t=repmat('2',1,twos);
            for threes=0:8-zeros-ones-twos
                th=repmat('3',1,threes);
                for fours=0:8-zeros-ones-twos-threes
                    fo=repmat('4',1,fours);
 for fives=0:8-zeros-ones-twos-threes-fours
    fi=repmat('5',1,fives) ;
    for sixes=0:8-zeros-ones-twos-threes-fours-fives
        sx=repmat('6',1,sixes);
        for sevens=0:8-zeros-ones-twos-threes-fours-fives-sixes
            sv=repmat('7',1,sevens);
            for eights=0:8-zeros-ones-twos-threes-fours-fives-sixes-sevens
                e=repmat('8',1,eights);
                for nines=0:8-zeros-ones-twos-threes-fours-fives-sixes-sevens-eights
                    ni=repmat('9',1,nines);
                    dig=[z o t th fo fi sx sv e ni];
                    tot=0;
                    for i=1:length(dig)
                        tot=tot+f(str2double(dig(i))+1);
                    end
                    tt=char(string(tot));
                    if isequal(sort(tt),sort(dig))
                       disp(tt); 
                    end
                end
            end
        end
    end
 end
                end
            end
        end
    end
end

finds

3679464

     24
   5040
  40320
3628800
    120
   5040
    120
-------    
3679464 

found when testing the combination 3, 4, 4, 6, 6, 7, 9.
    
I had really only needed to go another million in the original program, which would have been quicker than writing a new, faster, program.

Also, I think 3679464 is the only such number. All 8-and-fewer-digit possibilities have been tested (that's one advantage of the new program). The most that a 9-digit number could add to would be 9*(10!) =  32659200, which has only 8 digits, so higher than 8 digits would be impossible..

  Posted by Charlie on 2021-12-16 15:43:11
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (8)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information