Consider all integer pairs (
a,
b) such that (b-a) = sod(a) + sod(b) (with a < b)
Now consider Set A, the set of all possible values for "
a", the smaller member of each pair.
Part 1:
Prove that every "a" is a multiple of 9, or find a counterexample.
Part 2: Set M contains every element of Set A divided by 9.
But not every natural number appears in M.
Can you find a pattern to predict which positive integers do not appear in M?
Inspired by a problem on the YouTube channel Dr Peyam Show which asked "Are you smarter than a first grader?" which was itself inspired by Nob Yoshigahara's masterpiece
*** "sod" denotes "sum of digits"
I believe that the following program finds all successful a and lists all unsuccessful ones divided by 9 (up to a limit of 501 listings).
clc
list=double.empty;
for a= 0:9:99999999
hit=false;
soda=sod(a);
for diff=soda+1:9999999
b=a+diff;
if sod(b)==diff-soda
m=a/9;
% if ~ismember(m,list)
hit=true;
break
% disp([a b soda sod(b) diff])
% disp(list);
% end
end
ds=char(string(b));
if 9*length(ds)<diff-soda
break
end
end
if hit==false
list=[list a/9];
if length(list) > 500
for i=1:length(list)
disp(list(i))
end
break
end
end
end
9
20
41
52
63
74
85
96
107
108
120
141
152
163
174
185
196
207
218
219
241
252
263
274
285
296
307
318
329
330
341
352
363
374
385
396
407
418
429
440
452
463
474
485
496
507
518
529
540
551
563
574
585
596
607
618
629
640
661
662
674
685
696
707
718
729
740
761
772
773
785
796
807
818
829
840
861
872
883
884
896
907
918
929
940
961
972
983
994
995
1007
1018
1029
1040
1061
1072
1083
1094
1105
1106
1107
1120
1141
1152
1163
1174
1185
1196
1207
1218
1219
1241
1252
1263
1274
1285
1296
1307
1318
1329
1330
1341
1352
1363
1374
1385
1396
1407
1418
1429
1440
1452
1463
1474
1485
1496
1507
1518
1529
1540
1551
1563
1574
1585
1596
1607
1618
1629
1640
1661
1662
1674
1685
1696
1707
1718
1729
1740
1761
1772
1773
1785
1796
1807
1818
1829
1840
1861
1872
1883
1884
1896
1907
1918
1929
1940
1961
1972
1983
1994
1995
2007
2018
2029
2040
2061
2072
2083
2094
2105
2106
2118
2129
2140
2161
2172
2183
2194
2205
2216
2217
2218
2241
2252
2263
2274
2285
2296
2307
2318
2329
2330
2341
2352
2363
2374
2385
2396
2407
2418
2429
2440
2452
2463
2474
2485
2496
2507
2518
2529
2540
2551
2563
2574
2585
2596
2607
2618
2629
2640
2661
2662
2674
2685
2696
2707
2718
2729
2740
2761
2772
2773
2785
2796
2807
2818
2829
2840
2861
2872
2883
2884
2896
2907
2918
2929
2940
2961
2972
2983
2994
2995
3007
3018
3029
3040
3061
3072
3083
3094
3105
3106
3118
3129
3140
3161
3172
3183
3194
3205
3216
3217
3229
3240
3261
3272
3283
3294
3305
3316
3327
3328
3329
3341
3352
3363
3374
3385
3396
3407
3418
3429
3440
3452
3463
3474
3485
3496
3507
3518
3529
3540
3551
3563
3574
3585
3596
3607
3618
3629
3640
3661
3662
3674
3685
3696
3707
3718
3729
3740
3761
3772
3773
3785
3796
3807
3818
3829
3840
3861
3872
3883
3884
3896
3907
3918
3929
3940
3961
3972
3983
3994
3995
4007
4018
4029
4040
4061
4072
4083
4094
4105
4106
4118
4129
4140
4161
4172
4183
4194
4205
4216
4217
4229
4240
4261
4272
4283
4294
4305
4316
4327
4328
4340
4361
4372
4383
4394
4405
4416
4427
4438
4439
4440
4452
4463
4474
4485
4496
4507
4518
4529
4540
4551
4563
4574
4585
4596
4607
4618
4629
4640
4661
4662
4674
4685
4696
4707
4718
4729
4740
4761
4772
4773
4785
4796
4807
4818
4829
4840
4861
4872
4883
4884
4896
4907
4918
4929
4940
4961
4972
4983
4994
4995
5007
5018
5029
5040
5061
5072
5083
5094
5105
5106
5118
5129
5140
5161
5172
5183
5194
5205
5216
5217
5229
5240
5261
5272
5283
5294
5305
5316
5327
5328
5340
5361
5372
5383
5394
5405
5416
5427
5438
5439
5461
5472
5483
5494
5505
5516
5527
Edited on January 29, 2022, 7:23 am
|
Posted by Charlie
on 2022-01-28 22:24:45 |