All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
2 parallel chords (Posted on 2022-02-10) Difficulty: 3 of 5
In a circle of radius r there are two parallel chords.

The distance between the chords is equal to the average of the lengths of the chords.

Find the relation between the distances from the chords to the center of the circle.

No Solution Yet Submitted by Jer    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 3
syms x1 y1 x2 y2
clc
for y1=.98:-.02:0
   x1=sqrt(1-y1^2);
   eq1=x2^2+y2^2==1;
   eq2=y1-y2==x1+x2;
   eqs=[eq1, eq2];
   s=solve(eqs,y2,x2);
   x2n=eval(s.x2);   % solutions are 1x2 matrices for each variable
   y2n=eval(s.y2);   % as both left and right ends are found
   [num ix]=max(x2n);   % max finds the positive x2 value
   x2n=x2n(ix);
   y2n=y2n(ix);
   fprintf('%4.2f %7.5f    %7.5f %4.2f\n',y1,x1,y2n, x2n);
end

produces a table of values for such pairs of chords for a unit circle centered on the origin. Multiply by r for the general case, as generality is not lost. The chords were chosen to be horizontal.

The first column gives the y coordinate of the top chord of the two. The next is the x coordinate of the right-hand end of the top chord, and is thus half the length of that chord. The last two columns are the same data for the bottom chord.

The table shows that the distance of each chord from the center is half the length of the other chord.



  Top chord        Bottom chord
  
    right-end         right-end
  y     x           y     x
        
0.98 0.19900    -0.19900 0.98
0.96 0.28000    -0.28000 0.96
0.94 0.34117    -0.34117 0.94
0.92 0.39192    -0.39192 0.92
0.90 0.43589    -0.43589 0.90
0.88 0.47497    -0.47497 0.88
0.86 0.51029    -0.51029 0.86
0.84 0.54259    -0.54259 0.84
0.82 0.57236    -0.57236 0.82
0.80 0.60000    -0.60000 0.80
0.78 0.62578    -0.62578 0.78
0.76 0.64992    -0.64992 0.76
0.74 0.67261    -0.67261 0.74
0.72 0.69397    -0.69397 0.72
0.70 0.71414    -0.71414 0.70
0.68 0.73321    -0.73321 0.68
0.66 0.75127    -0.75127 0.66
0.64 0.76837    -0.76837 0.64
0.62 0.78460    -0.78460 0.62
0.60 0.80000    -0.80000 0.60
0.58 0.81462    -0.81462 0.58
0.56 0.82849    -0.82849 0.56
0.54 0.84167    -0.84167 0.54
0.52 0.85417    -0.85417 0.52
0.50 0.86603    -0.86603 0.50
0.48 0.87727    -0.87727 0.48
0.46 0.88792    -0.88792 0.46
0.44 0.89800    -0.89800 0.44
0.42 0.90752    -0.90752 0.42
0.40 0.91652    -0.91652 0.40
0.38 0.92499    -0.92499 0.38
0.36 0.93295    -0.93295 0.36
0.34 0.94043    -0.94043 0.34
0.32 0.94742    -0.94742 0.32
0.30 0.95394    -0.95394 0.30
0.28 0.96000    -0.96000 0.28
0.26 0.96561    -0.96561 0.26
0.24 0.97077    -0.97077 0.24
0.22 0.97550    -0.97550 0.22
0.20 0.97980    -0.97980 0.20
0.18 0.98367    -0.98367 0.18
0.16 0.98712    -0.98712 0.16
0.14 0.99015    -0.99015 0.14
0.12 0.99277    -0.99277 0.12
0.10 0.99499    -0.99499 0.10
0.08 0.99679    -0.99679 0.08
0.06 0.99820    -0.99820 0.06
0.04 0.99920    -0.99920 0.04
0.02 0.99980    -0.99980 0.02
0.00 1.00000    -1.00000 0.00

Note the degenerate limiting case at the bottom, where the top chord is a diameter of the circle and the bottom chord has been reduced to a point so that the distances are zero and 1 respectively (units being the radius).

  Posted by Charlie on 2022-02-10 09:38:22
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information