All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
All the nines (Posted on 2022-04-07) Difficulty: 3 of 5

Let a be a prime of the form (2n+1), and let b be a prime of the form (2a+1), such that 1/b has an even period of length 2a, i.e. 0 followed by 2a decimal digits.

The 'splitadd' function splits these 2a digits into equal halves and adds them.

To give an (imaginary) example, say 1/b was 0.0123456789, then 'splitadd' would produce 01234+56789, and add these for a value of 58023.

Show that the result of the 'splitadd' function is always (10^a-1), or find a counterexample.

No Solution Yet Submitted by broll    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts possible computer solution(s) | Comment 1 of 9
The solution depends on and interpretation of "1/b has an even period of length 2a", i.e., if the period is half that, is it still considered to have a period of that full value.

clearvars, clc
for i=2:50
   a=nthprime(i);
   n=(a-1)/2;
   b=2*a+1;
   if isprime(b)
      recip=1/sym(b);
   end
   nines=repmat('9',2*a);
   nines=sym(nines(1,:));
   
   if nines/b==round(nines/b)
      s=char(string(nines/b));
      lhs=s(1:floor(length(s)/2));
      rhs=s(floor(length(s)/2)+1:end);
      su=sym(lhs)+sym(rhs);
      if su~=sym(10)^a-1
          disp([a b])
          disp(s)
          disp(lhs)
          disp(rhs)
          disp(su)
          disp(' ')
      end
   end
end

tests 2a+1 to see if it's prime; if so it assigns it to b.

Then an appropriately sized string of n's is divided by b to see if the fraction repeats with a cycle length of 2a. If it does, the splitting is done and the addition made. A report is made if the result of adding the splits is not equal to 10^a-1.

The first case it finds of a possible counterexample, the case where a=41, making b=83. While 1/83 does repeat in a "cycle" of 82, this is actually two cycles, so the cycle length, or period is really 41, which is merely a, rather than the 2a mentioned. If this situation is sufficient to meet the criteria, then this is the first counterexample. If it is not sufficient, then no counterexamples have been found.

1/83 = 0.01204819277108433734939759036144578313253,01204819277108433734939759036144578313253, ...

01204819277108433734939759036144578313253
01204819277108433734939759036144578313253
-----------------------------------------
02409638554216867469879518072289156626506 merely double the value of the real cycle taken twice.



Next report:

    53   107
0.00934579439252336448598130841121495327102803738317757
   00934579439252336448598130841121495327102803738317757

00934579439252336448598130841121495327102803738317757 
00934579439252336448598130841121495327102803738317757

01869158878504672897196261682242990654205607476635514

The "period" is again actueally two cycles concatenated.

The same occurs with the next reported a, b pairs:

113, 227
173, 347
179, 359

Of course this situation could be considered a counterexample, if the fact that 2a digis repeat and adding the first a digits to digits a through 2a, add up to merely twice the number represented by the first a digits.

All of the following a, b pairs satisfied the conditions and passed the splitsum test, when cycle length is correctly calculated in determining eligibility:

     3     7
     5    11
    11    23
    23    47
    29    59
    83   167
    89   179
   131   263
   239   479
   251   503
   
This is the entirety of the cases that satisfy the strict criteria (b is prime and 1/b has a cycle length of 2a that is the shortest such cycle), and all of them have a split-cycle total of 10^a-1.   
   
The revised program guards against false positives and goes all the way to the 400th prime for a:  (and fixes a bug that didn't actually vet b for being prime--see the bug in the above listing)

clearvars, clc
for i=2:400
    a=nthprime(i);
    n=(a-1)/2;
    b=2*a+1;
    if isprime(b)        
        nines=repmat('9',2*a);
        nines=sym(nines(1,:));
        
        if nines/b==round(nines/b)
            s=char(string(nines/b));
            lhs=s(1:end-a);
            rhs=s(end-a+1:end);
            su=sym(lhs)+sym(rhs);
            disp([a b])
            if su~=sym(10)^a-1  && eval(sym(lhs)==sym(rhs))==false
                disp([a b])
                disp(s)
                disp(lhs)
                disp(rhs)
                disp(su)
                disp(' ')
            end
        end
    end
end

checks:

           3     7
           5    11
          11    23
          23    47
          29    59
          41    83
          53   107
          83   167
          89   179
         113   227
         131   263
         173   347
         179   359
         191   383
         233   467
         239   479
         251   503
         281   563
         293   587
         359   719
         419   839
         431   863
         443   887
         491   983
         509  1019
         593  1187
         641  1283
         653  1307
         659  1319
         683  1367
         719  1439
         743  1487
         761  1523
         809  1619
         911  1823
         953  1907
        1013  2027
        1019  2039
        1031  2063
        1049  2099
        1103  2207
        1223  2447
        1229  2459
        1289  2579
        1409  2819
        1439  2879
        1451  2903
        1481  2963
        1499  2999
        1511  3023
        1559  3119
        1583  3167
        1601  3203
        1733  3467
        1811  3623
        1889  3779
        1901  3803
        1931  3863
        1973  3947
        2003  4007
        2039  4079
        2063  4127
        2069  4139
        2129  4259
        2141  4283
        2273  4547
        2339  4679
        2351  4703
        2393  4787
        2399  4799
        2459  4919
        2543  5087
        2549  5099
        2693  5387
        2699  5399
        2741  5483
        
This list shows only those where b is prime and either the period is smaller than 2a or the period is 2a and the splitadd adds up to 10^a-1 (only 10 cases, listed prior, satisfy that latter case).  

Edited on April 7, 2022, 10:00 am
  Posted by Charlie on 2022-04-07 09:48:48

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information