All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Algorithms
Divisible by 13 (Posted on 2022-04-15) Difficulty: 3 of 5
Devise an algorithm that determines whether a given positive integer N is divisible by 13, and if NOT, to find the remainder.
N can contain up to 20,220 digits.

Note: Simply dividing by 13 or, performing long division by 13 is NOT permissible.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Test for 20,220-digit numbers | Comment 7 of 11 |
(In reply to re: No Subject by Charlie)

To test the viability up to 20,220 digits, this driver

clearvars
n='';
for i=1:20220
  n=[n char(string(randi(10)-1))];
end
n=sym(n);

for i=n:n+100
  [a b]=rem13(i);
  disp([a b])
end  

creates a 20,220-digit number made up of random digits and then uses the algorithm on that number and the next 100 numbers (still for course of 20,220 digits each). The results are tabulated below. Of course the numbers thamselves are not listed for an obvious reason. But the sequence of remainders is consistent.

The list is followed by Matlab's own computation of n mod 13, and it agrees with the first line of the tabulation.

    div
    t/f   rem
    
>> divisibilityBy13
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
     0     3
     0     4
     0     5
     0     6
     0     7
     0     8
     0     9
     0    10
     0    11
     0    12
     1     0
     0     1
     0     2
>> mod(n,13)
ans =
6

While the algorithm took about 9 seconds for each 20,220-digit number, the mod function took a fraction of a second.


  Posted by Charlie on 2022-04-15 14:48:27
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information