All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Maximum Palindrome Count Muse (Posted on 2022-06-07) Difficulty: 4 of 5
A 3-digit decimal (base ten) Palindrome P is such that when expressed in base N, with N being a positive integer between 2 and 36 inclusively (base 10 excluded), at least one of them is also a palindrome.

M denotes the total count of such non base ten palindrome for a given value of decimal palindrome P.

Which value or values of P maximises the value of M?

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 2 of 3 |
clearvars, clc
 
ct=[];
for beg=10:99
   pct=0;
   pal10=beg*10+floor(beg/10); 
   for b=[2:9 11:36]
      n=dec2base(pal10,b); 
      if ispal(n)
          fprintf('%3d %10s %3d ',pal10,n,b);
          pct=pct+1;
      end
   end
   ct=[ct;pal10, pct];
end
ct=sortrows(ct,2);
disp(ct)
M=sum(ct(:,2))

function ip=ispal(s)
  ip=true;
  for i=1:floor(length(s)/2)
      if s(i)~=s(end+1-i)
         ip=false;
         break
      end
  end
end

finds

M =
   140
   
This is actually the sum of all the M as defined in the puzzle. The individual M values are found below.   
   
The P that maximizes the number of non-base-10 palindromes is 252, which finds 5 such palindromes:

    representaton  base
252       2002       5
252         EE      17
252         CC      20
252         99      27
252         77      35

The runners-up may be more interesting, with longer palindromes:

666      22122       4
666        3C3      13
666        1G1      19
666         II      36

676      10201       5
676        565      11
676        484      12
676        121      25

The P values with at least one non-base-10 palindrome are:

 base-10  count
   141     1
   151     1
   161     1
   181     1
   212     1
   272     1
   363     1
   393     1
   454     1
   545     1
   565     1
   686     1
   696     1
   727     1
   767     1
   818     1
   848     1
   909     1
   929     1
   939     1
   949     1
   111     2
   171     2
   191     2
   222     2
   232     2
   282     2
   292     2
   313     2
   323     2
   333     2
   353     2
   414     2
   434     2
   444     2
   484     2
   494     2
   505     2
   525     2
   575     2
   585     2
   616     2
   646     2
   656     2
   717     2
   737     2
   777     2
   797     2
   828     2
   838     2
   868     2
   888     2
   898     2
   919     2
   979     2
   999     2
   121     3
   242     3
   343     3
   373     3
   464     3
   555     3
   595     3
   626     3
   757     3
   787     3
   858     3
   989     3
   666     4
   676     4
   252     5

Edited on June 7, 2022, 10:25 am
  Posted by Charlie on 2022-06-07 10:23:45

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information