Given that:
1
N = ----------------------------
1.00........00100........001
50 zeros 50 zeros
is a decimal (base ten) rational number.
Describe the pattern after the decimal point in the decimal expansion of N.
digits 700
n=vpa(1)
n=n/vpa(10)^51+1
n=n/vpa(10)^51+1
1/n
>> decimalSpecification
n =
1.0
n =
1.000000000000000000000000000000000000000000000000001
n =
1.000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000001
ans =
0.
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
>>
The third value shown for n is the denominator of the intended fraction.
Taking the reciprocal to get N, shows, after the decimal point:
51 9's
102 zeros
...
repeating, presumably forever.
Switching to 1400-digit precision gives:
0.
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
999999999999999999999999999999999999999999999999999
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
with that 1 at the end just the indication that the next digit is higher than 5 (i.e., 9).
Edited on June 13, 2022, 9:04 am
|
Posted by Charlie
on 2022-06-13 09:02:41 |