All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Primorial Penultimate Piece (Posted on 2022-06-14) Difficulty: 3 of 5
Primorials are like Factorials except that only the prime numbers are multiplied:
2, 6, 30, 210, 2310, 30030, ...

Starting with the first primorial which is at least two digits, consider a sequence composed of the second to last digit of each primorial:
3, 1, 1, 3 ...
The first digit of this sequence is '3'.

Please provide the 999th and 9999th digits of this sequence.

No Solution Yet Submitted by Larry    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
p=4; primorial=6;
for i=1:10
  p=nextprime(p+1);
  primorial=primorial*p;
  fprintf('%3d %10d %15d\n',i, p, primorial)
end
l10=log(10);
p=4; primorial=6; logprimorial=log(primorial)/l10;
for i=1:9999
  p=nextprime(p+1);
  primorial=mod(primorial*p,100000);
  logprimorial=logprimorial+log(p)/l10;
  if i==999 || i==9999 || i<11
    fprintf('%4d %10d %12.6f   %5d\n',i, p,logprimorial, primorial)
  end
end

first finds the third through 12th primordial, showing the sequence number for the chosen sequence that starts at the third primordial, accounting for the discrepancy in the numbering; this is followed by the largest prime used and the primorial itself:

  1          5              30
  2          7             210
  3         11            2310
  4         13           30030
  5         17          510510
  6         19         9699690
  7         23       223092870
  8         29      6469693230
  9         31    200560490130
 10         37   7420738134810
 
 Then it shows the values mod 100000 so as not to need extra precision; the first 10 (that is, for primorials 3 through 12) are shown for comparison to the full values, then the values for 999th and 9999th in the sequence.
 
           last     common       last
          prime     log of    five digits
   i       used    primorial  of primorial
 
   1          5     1.477121       30
   2          7     2.322219      210
   3         11     3.363612     2310
   4         13     4.477555    30030
   5         17     5.708004    10510
   6         19     6.986758    99690
   7         23     8.348486    92870
   8         29     9.810884    93230
   9         31    11.302245    90130
  10         37    12.870447    34810
 999       7927  3396.730742    95390
9999     104743 45341.977414    07090

The next-to-last digit in each of the 1001st and 10001st primorial of the sequence is 9 and thus the 999th and 9999th elements of the sequence.  (leading zero of 07090 provided manually)

The common log of the primorial is included just to show how big the primorial is.

  Posted by Charlie on 2022-06-14 11:19:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information