All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
X and Lucky Seven Settlement (Posted on 2022-06-18) Difficulty: 3 of 5
         x 7 x
   ____________
x x) x x x x x
     x 7 7
    ----------
       x 7 x
       x 7 x
     ---------
           x x                            
           x x                                 
          ----- 
In this skeletal division problem:
  • Each of the x's denote a digit from 0 to 9, whether same or different.
  • None of the x's denote the digit 7
  • None of the numbers can contain a leading zero.
Complete the above-mentioned division.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution mostly computer solution | Comment 2 of 3 |
clearvars, clc
for q=[170:979]
  qs=char(string(q));
  for dvsr=10:99
    dvdnd=q*dvsr;
    dvdnds=char(string(dvdnd));
    if dvdnd>=10000 
      if dvdnd<=99999 && qs(2)=='7'
        part1=floor(dvdnd/100);
        tst=dvsr*floor(q/100);
        diff=part1-tst;
        if mod(tst,100)==77 && tst>100 && diff<100 && diff>10 && mod(diff,10)==7
          if isempty(strfind(dvdnds,'7') )
            disp([q dvsr dvdnd])
          end
        end
      end
    end
  end
end

giving

         970          53       51410
         971          53       51463

narrows it down to just two possibilities, so further programming wasn't called for:

Either

    ___970
53 ) 51410
or
    ___971
53 ) 51463

So, working both out:

   ___970
53 )51410
    477
     371
     371
       00  leading zero (but understandably so)
           no other line
           
           
   ___971           
53 )51463  This is the solution.
    477
     376
     371   
       53 
       53   

Edited on June 18, 2022, 9:39 am
  Posted by Charlie on 2022-06-18 09:36:30

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information