All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
2000 9s (Posted on 2019-04-15) Difficulty: 3 of 5
Find the sum of the digits of the number 999...9993. The number has 2000 repeated 9s.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution Comment 2 of 2 |
In general, we have:
(99...........99)^3
      p  9s

= (10^p-1)^3
= 10^(3p) - 3* 10^(2p) + 3 * 10^p -1 

= 100.....00  -  300......00 + 300......00  - 1
       3p  0s          2p  0s           p  0s

= 99..............99700.......00299.......99
        p-1  9s           p-1  0s      p  9s

Accordingly,  the sum of the digits of (10^p -1)^3 is:
(p-1)*9 + 7 +2 + p*9
= 18*p -9 +9
= 18*p

Substituting p=2000, we have the required sum of the digits of (10^2000 - 1)^3 as:
18*2000 = 36,000
        

  Posted by K Sengupta on 2022-06-21 04:44:46
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information