All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
Sum to Infinity - 1 (Posted on 2006-03-11) Difficulty: 4 of 5
Find the sum of the following series:

1 + 4/7 + 9/49 + 16/343 + .......... to infinity

No Solution Yet Submitted by Ravi Raja    
Rating: 3.8750 (8 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution Comment 13 of 13 |
The sum of the given series is S (say).
Then, we must have:
S      = 1+ 4/7  + 9/(7^2) + 16/(7^3) +......  (i)
S/7  =       1/7 + 4/(7^2) +  9/(7^3)   +.....  (ii)
Subtracting (ii) from (i), we must have:

6*S             4-1       9-4        16-9
------  = 1 + ------- + -------- + --------- +.........
 7                 7         7^2        7^3
   
=  1 + 3/7 + 5/(7^2) + 7/(7^3)+.......

Then, we must have:

6*S            1                3-1       5 - 3        7 - 5
------ * (1 - -----) = 1 + -------- + ---------- + ----------
  7              7                 7          7^2          7^3

= 1 + 2{1/7 +1/(7^2) + 1/(7^3)+........}

       36*S              2*(1/7)               1
=> ---------- = 1 + ---------------- = 1 + ----- 
         49                1 - 1/7                3

=> S*(36/49) = 4/3
=> S = 49/27

Consequently,  the required sum of the infinite series is 49/27

Edited on July 16, 2022, 11:17 pm
  Posted by K Sengupta on 2022-07-16 23:14:01

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information