All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
A square deal (Posted on 2022-07-18) Difficulty: 2 of 5
Find the sum of:

  1       1       1               1
----- + ----- + ----- + ... + ----------
√1+√2   √2+√3   √3+√4         √999+√1000

No Solution Yet Submitted by Ady TZIDON    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution | Comment 1 of 4
We observe that:
     1                         V(n+1) - Vn
---------------------   =  ---------------------  = V(n+1) - Vn  ...... (#)
Vn + V(n+1)             (n+1)  -  n 

Therefore, substituting n=1,2,3,.....,997,998,999 in turn, the given expression
reduces to:
{(V2 - V1) + (V3 - V2) + (V4 - V3)+ ............+ (V998 - V997) + (V999 - V998) + (V1000 - V999)}
Obviously,  all the real numbers except V1000 and V1 cancels out, leaving us with:
 V1000 - V1 
= 10*V10 -1
    ---------------
(The numerical value of the final answer is approximately equal to 30.6227766)
         

Edited on July 18, 2022, 7:51 am
  Posted by K Sengupta on 2022-07-18 07:02:05

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information