All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Perfect Powers with no Repeat Digits (Posted on 2022-07-22) Difficulty: 2 of 5
N = i^p,
where i,p are integers greater than 1;
and N is a positive integer with no repeat digits.

1) What is the largest possible value of 'N'?
2) What is the largest possible value of 'p'?

No Solution Yet Submitted by Larry    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 1 of 1
n='0123456789'; ct=0;
set=perms(n);
for i=1:length(set)
  ft=factortable(str2double(set(i,:)));
  good=true;
  
  tst=gcd(sym(ft(:,2))) ;
  if tst==1 
      good=false;
  end
  

  if good
      ct=ct+1;
    disp(set(i,:))
    if ct>12
        break
    end
  end
end

where

factortable.m is

function ft=factortable(x)
  f=unique(factor(x));
  f=f';
  for i=1:length(f)
    n=x; ct=0;
    while mod(n,f(i))==0
      ct=ct+1;
      n=n/f(i);
    end
    f(i,2)=ct;
  end
  ft=f;
end

This finds

9814072356
       33024 
       
     2     2
     3     2
    11     2
    19     2
    79     2
    
    
9761835204
       49012
       
     2     2
     3     4
    11     2
   499     2
   
   
9814072356 is the highest found. It's the 33024th permutation tried, having started with the highest value. And the below table shows the prime factors, and the fact that each appears twice in the prime factorization, indicates it's a perfect square:

     2     2
     3     2
    11     2
    19     2
    79     2   
    
9761835204 is next and it's also a perfect square, having all even repetitions of its prime factors.

The same is true for

9614783025
      113172
      
    3    4
    5    2
 2179    2
 
 
 
9560732841
135541
     3    2
    11    2
  2963    2 
  
  
9351276804
      220832
      
     2     2
     3     2
    71     2
   227     2


For part 2:

mxl=log(9876543210) ;
mxp=0;
for i=2:99380
  mx=floor(mxl/log(i));
  for p=mx:-1:2
    N=char(string(i^p));
    if isequal(unique(N),sort(N))
      if p>=mxp
        disp([i p str2double(N)])
        mxp=p;
      end
    end
  end
end

finds 

2^29 = 536870912

where 29 is the largest p that would work.

  Posted by Charlie on 2022-07-22 12:56:28
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information