Can two non-congruent quadrilaterals have the same four sides and same four angles?
Give an example or prove the task is never possible.
(In reply to
Possible Solution by broll)
Just naming sides and angles doesn't guarantee the quadrilateral exists.
Simple counter: there exists a quadrilateral with sides 1,sqrt(3),4,2sqrt(2) and angles 120,60,45,135
Mixing them up as you describe would put the 120 angle between the 2sqrt(2) and the sqrt(3). The diagonal formed would be about 3.98
The same diagonal formed by the other two sides and the 135 angle would be about 4.76
I should note that I don't know the answer to this problem, but I have not found a pair that works.
|
Posted by Jer
on 2022-07-27 08:32:38 |