All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
7 somewhere (Posted on 2022-08-12) Difficulty: 4 of 5
Prove: If x is a positive real number, then somewhere in the infinite sequence {x, 2x, 3x, ...} there is a number containing the digit 7.

If x is a positive real number, then somewhere in the finite sequence {x, 2x, 3x, ..., nx} there is a number containing the digit 7. Find the minimum value of n.

Note: Some numbers can be written in two ways (1.8=1.7999999...) only consider the form without all the 9's.

Source: Slightly adapted from a post by Victor Wang on Facebook.

No Solution Yet Submitted by Jer    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Part I proof | Comment 2 of 16 |
(In reply to Part I proof by Steve Herman)

I'm not sure your proof is sufficient.  Just because the set of positive integers is infinite, that does not guarantee that every space on the slide rule is hit.  It's still possible some interval is missed every time.


This reminds me of people saying every possible finite digit sequence occurs somewhere in pi.  This seems plausible but has not been proved true.  https://en.wikipedia.org/wiki/Normal_number

  Posted by Jer on 2022-08-12 08:59:43
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information