All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
7 somewhere (Posted on 2022-08-12) Difficulty: 4 of 5
Prove: If x is a positive real number, then somewhere in the infinite sequence {x, 2x, 3x, ...} there is a number containing the digit 7.

If x is a positive real number, then somewhere in the finite sequence {x, 2x, 3x, ..., nx} there is a number containing the digit 7. Find the minimum value of n.

Note: Some numbers can be written in two ways (1.8=1.7999999...) only consider the form without all the 9's.

Source: Slightly adapted from a post by Victor Wang on Facebook.

No Solution Yet Submitted by Jer    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: solution | Comment 10 of 16 |
(In reply to solution by Charlie)

Charlie, your last approach, involving the last digits of a real numbe,r is a little suspect, as some real numbers have an infinite number of digits.  Is it possible that your method only works for integers, or for rationals that are not repeating decimals?
  Posted by Steve Herman on 2022-08-13 20:42:04

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information