In the classic problem you are given a triangle ABC with points D on AB, E on BC, and F on AC such that |AD|=2|DB|, |BE|=2|EC|, and |CF|=2|FA|. The lines AE, BF, and CD enclose a triangle inside triangle ABC. You are to find the area of this enclosed triangle relative to that of ABC. The answer is 1/7.
What if everything is the same except |BE|=|EC| and |CF|=3|FA|. What is the area of the enclosed triangle relative to that of ABC?
If |BE| = |EC| and |CF| = 3|FA|; then the area of the enclosed triangle relative to that of ABC is 0.1