All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Powering up the digits V (Posted on 2022-08-26) Difficulty: 3 of 5
Each of α, β, γ, and δ corresponds to a nonzero digit, whether same or different, in positive integer base n.

Determine all possible values of n ≤ 100 such that this equation has at least one valid solution:
                  αβγδ = αα + ββ + γγ + δδ
*** αβγδ corresponds to concatenation of the four digits.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution | Comment 1 of 2
We can put an upper limit on what values the digits can take on.
The largest value the concatenation αβγδ can take on in the largest base (base 100) is 99,999,999.  Therefore α^α + β^β + γ^γ + δ^δ can not be larger.  In particular, the largest digit cannot be larger than 8, since 8^8 = 16,777,216 and 9^9 = 387,420,489.
So though we much check bases up to 100, we need only check digits from 1 to 8.

The only values I find are:
Base 10:  3 4 3 5
Base 20:  6 5 3 4

--------- code -----------
pow_s = [i**i for i in range(101)]
good_bases = []
for base in range(2,101):
    if base <= 9:
        digits = [i for i in range(1,base)]
    else:
        digits = [i for i in range(1,9)]
    for a in digits:
        for b in digits:
            for c in digits:
                for d in digits:
                    abcd = a*(base**3) + b*(base**2) + c*(base**1) + d
                    x = pow_s[a] + pow_s[b] + pow_s[c] + pow_s[d]
                    if abcd == x:
                        good_bases.append(base)
                        print(base,a,b,c,d)
                        continue

  Posted by Larry on 2022-08-26 08:32:17
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information