All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Fermat numbers (Posted on 2017-07-13) Difficulty: 1 of 5
For any non-negative integer n define f(n)=2^(2^n)+1.
The above formula produces Fermat numbers i.e. 3,5,17,257 ...etc

Prove: Except the 1st term, the digital root of sequence's members are either 5 or 8, depending on parity of n.

No Solution Yet Submitted by Ady TZIDON    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution Comment 3 of 3 |
At the outset, we will prove that:
f(n) = {f(n-1)}^2 -2f(n-1) +2
PROOF
f(n) =  2^(2^n) +1 
and, for n>1
f(n-1) =  2^{2^(n-1)} +1
=> 2^{2^(n-1)} * f(n-1) = 2^{2^(n-1) * 2^(2^(n-1))) + 2^(2^(n-1))
=> 2^(2^(n-1)) * f(n-1) - 2^(2^(n-1)) = 2^(2^n) = f(n) -1
=> f(n) -1 = {f(n-1) - 1} * f(n-1) - f(n-1) + 1
=> f(n)= {f(n-1)}^2 - 2f(n-1) +2
---------------------------

Let us denote the digital root of a positive integer x by R(x)
We know that: 
R(x+y) = R{R(x) + R(y)}
R(xy) = R{R(x) * R(y)}

We will now prove that:
R{f(n)} = 5, if n is even
            = 8, if n is odd
PROOF
R{f(n)}
= R((f(n-1))^2 -2f(n-1) +2}
= R(R((f(n-1))^2 - R(2*f(n-1)) +R(2)))
= R(R(R(f(n-1) * R(f(n-1)) - 2R(f(n-1)) +2
If R(n-1) =5, then: 
R(n) = 5^2 -2*5 +2 = 17 == 8 mod 9
If R(n-1) = 8, then:
R(n) = 8^2-2*8+2 = 50 == 5 mod 9

From the above result, it trivially follows that:
{R(f(n))}  (-  {3,5,8,5,8,5,8,5,8,..........}

Consequently, except the first term -  the digital root of the sequence's  members are either 5 or 8, depending on the parity of n.

Edited on August 27, 2022, 9:59 pm
  Posted by K Sengupta on 2022-08-27 21:55:19

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information