All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Science
Double Pressure Predicament (Posted on 2022-09-05) Difficulty: 3 of 5
Armand explained to his friend Bertrand that, in general, if you have a gas container and the amount of gas is doubled, the new pressure will be double the old pressure. The term "general" is employed because this is not exactly accurate, but it is close enough for the purposes of answering his next query.

Armand now posited this question to Bertrand, "If you have a tire filled with the standard 32 psi and you double the amount of air molecules in the tire, what pressure will your tire gauge now read? Assume that the tire does NOT expand, and that the first paragraph containing my initial information is exactly true."
Bertrand immediately answered, "64 psi."
But, Armand replied back to him, "Your answer is incorrect!"
What is the correct answer and why?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution | Comment 1 of 6
The gas law equation PV=mRT requires both temperature and pressure to be in absolute units.  When you fill a tire to "32 psi", that is a gage pressure (what a tire gage would say), which is pressure relative to the outside atmosphere. 

On the surface of the earth, the absolute air pressure is generally taken as 14.7 psi., so the 32 psi tire actually has an absolute pressure inside of 32+14.7=46.7psi.  If you then double the amount of air molecules, you double the mass of air.  With no change in temperature or volume, the absolute pressure doubles to 93.4 psi.  A tire gage would then read 93.4-14.7=78.7psi

Another smaller but non-zero factor is how the tire is filled with the new/extra air.  An air compressor adds heat to the air it compresses, so if that warmed air is put immediately into the tire, the air in the tire will be slightly warmer than the surroundings and will read a slightly higher pressure than the theoretical 78.7psi.  When the air in the tire cools off for a while to the temperature of the surroundings, the gage pressure will approach 78.7 psi

Finally, let's assume that the air in the tank that will supply the tire was compressed yesterday, so that any added heat from the compression process is long gone.  Since the tank is at higher pressure than the tire (required for the air to flow), the compressed air flowing through the hose and nozzle is a pressure reducing process, which, because it occurs relatively quickly, is a cooling process for the flowing air.  Therefore, the air in the tire will be slightly cooled, resulting in a slightly lower pressure than the theoretical 78.7 psi., until such time as the air in the tire has returned to thermal equilibrium with the outside.

  Posted by Kenny M on 2022-09-05 08:34:19
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information