All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
The box (2) (Posted on 2022-10-02) Difficulty: 3 of 5
  • A box, having the precise shape of a rectangular cuboid, has integer dimensions.
  • When each one of the dimensions is increased by 3, the volume of the box trebles.
Determine the largest possible dimension of this box.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 5
clearvars,clc
for a=1:100
  for b=a:1000
    for c=b:10000
      if  (a+3)*(b+3)*(c+3)==3*a*b*c
        fprintf('%2d   %2d   %3d   %4d   %5d\n',a,b,c,a*b*c,(a+3)*(b+3)*(c+3));
      end
    end
  end
end

original
   dimensions   area  new area
 
 2   16   285   9120   27360
 2   17   150   5100   15300
 2   18   105   3780   11340
 2   20    69   2760    8280
 2   21    60   2520    7560
 2   24    45   2160    6480
 2   25    42   2100    6300
 2   30    33   1980    5940
 3    7    60   1260    3780
 3    8    33    792    2376
 3    9    24    648    1944
 3   12    15    540    1620
 4    5    42    840    2520
 4    6    21    504    1512
 4    7    15    420    1260
 5    6    12    360    1080
 6    6     9    324     972


 
 The largest possible dimension is 285.

  Posted by Charlie on 2022-10-02 12:48:42
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information