All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Consider, Unit Area, Get Side Length (Posted on 2022-10-05) Difficulty: 3 of 5
△ ABC has area 1 unit, with |AB|≤|AC|<|BC|

Determine the minimum length of |AC|.

See The Solution Submitted by K Sengupta    
Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 3
clc, clearvars;
mn=999;
for a=1:200
  for b=a:201
    for c=b+1:202
      if c<a+b              % make sure it's a triangle
        s=(a+b+c)/2;
        a0=sqrt(s*(s-a)*(s-b)*(s-c)); % Heron's formula
        r=sqrt(a0);         % from area to linear ratio   
        a1=a/r; b1=b/r; c1=c/r;     % scale it
        if b1<mn
          mn=b1;            % new minimum
          disp([a1 b1 c1])
        end
      end
    end
  end
end

tries unit triangles of various shapes, up to a ratio of 1:200 of its sides. The initially chosen triangles have larger (or possibly smaller) than unit area, so they are scaled to unit-area size. This assures that a very wide variety of proportions of triangles are tried.

Lower and lower minimum values are found for the length of the middle side:

  1.41979242240402   1.41979242240402   2.12968863360603
  1.41861241350476   1.41861241350476   1.89148321800635
  1.41435501909528   1.41435501909528   1.98009702673339
  1.41421782496056   1.41421782496056   2.00347525202746
  1.4142177955125    1.4142177955125    1.9965427701353
  1.41421368734233   1.41421368734233   1.99940555796675
  1.41421356605441   1.41421356605441   2.00010204341981
  1.41421356605366   1.41421356605366   1.99989797219709

As the puzzle is not limited to lengths reducible to rationals, it's apparent that the dimensions are sqrt(2), sqrt(2), 2, an isosceles right triangle. That's the minimum length, sqrt(2), one of the legs of the isosceles right triangle with hypotenuse = 2.

  Posted by Charlie on 2022-10-05 09:15:23
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information