All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
123…9 door to door (Posted on 2022-10-27) Difficulty: 3 of 5
Consider the sequence of 9 non zero distinct digits arranged in a 3 by 3 grid , like
547
398
162
Clearly there are 9! (=362880) ways to do it.
If we demand that the consecutive numbers are next-door neighbours
( horizontally or vertically) like
167
258
349
then the number is significantly lower, say N.

Find N & provide your reasoning.

See The Solution Submitted by Ady TZIDON    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
soln | Comment 2 of 28 |
First, we solve by counting the placements that work. The multiplicity by rotation or reflection is given in parentheses:

                 

(4)        (4)          (1)

100        000          000 

000        100          010   

000        000          000   

 |          |           |

(2)        (2)  (1)     (4)

100        200  000     020 

200        100  120     010 

000        000  000     000  

 |  \       x    x       |

 |   \                   |

(1)  (1)                (2)

100  100                923

200  230                814

300  000                765

 |       \           

(1)          (1)

100          140

200          230

340          000

 |            |         

 |            | 

(1) (1) (1)  (1)

189 187 167  145

276 296 258  236

345 345 349  987


x means "dead end"


So, the number of ways are found by multiplying the multiplicities along the three columns above for starting "1" in the: corner, side, and center:


Total = (4 * 2 * 3) + (4 * 2) + (4 * 2) 

Total = 40


Next, with some clunky code, making sure all that works by also counting the total number that fill = 9!


lord@rabbit 13054 % sim            

9!  =  362880   Total =  40




Edited on October 27, 2022, 10:27 am
  Posted by Steven Lord on 2022-10-27 09:41:50

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (6)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information