All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Quantity Query (Posted on 2022-11-13) Difficulty: 3 of 5
Determine all (non leading zero) 3-digit positive integers n such that the sum of squares of digits of n is precisely one-third of n.

See The Solution Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
soln Comment 1 of 1

just one:

267    4 + 36 + 49 = 89

program is here.


Adding a couple of lines of code gives the result for other divisors. I wonder if there is an analytic approach... It seems messy. 



divisor:   2  298    4 + 81 + 64 = 149


divisor:   3  267    4 + 36 + 49 =  89


divisor:   4  376    9 + 49 + 36 =  94


divisor:   6  372    9 + 49 +  4 =  62

divisor:   6  480   16 + 64 +  0 =  80


divisor:   7  133    1 +  9 +  9 =  19

divisor:   7  917   81 +  1 + 49 = 131

divisor:   7  973   81 + 49 +  9 = 139


divisor:   8  360    9 + 36 +  0 =  45


divisor:   9  315    9 +  1 + 25 =  35


divisor:  11  550   25 + 25 +  0 =  50

divisor:  11  803   64 +  0 +  9 =  73


divisor:  12  240    4 + 16 +  0 =  20


divisor:  13  130    1 +  9 +  0 =  10


divisor:  14  532   25 +  9 +  4 =  38

divisor:  14  630   36 +  9 +  0 =  45


divisor:  20  500   25 +  0 +  0 =  25


divisor:  21  420   16 +  4 +  0 =  20


divisor:  24  120    1 +  4 +  0 =   5


divisor:  25  400   16 +  0 +  0 =  16


divisor:  31  310    9 +  1 +  0 =  10


divisor:  37  111    1 +  1 +  1 =   3


divisor:  42  210    4 +  1 +  0 =   5


divisor:  50  200    4 +  0 +  0 =   4


divisor:  55  110    1 +  1 +  0 =   2


divisor: 100  100    1 +  0 +  0 =   1


lord@rabbit 12780 % 


Edited on November 13, 2022, 10:27 am
  Posted by Steven Lord on 2022-11-13 10:09:57

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information