All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
A Tangential Trapezoid (Posted on 2022-11-30) Difficulty: 3 of 5
There is a unique tangential isosceles trapezoid whose three different side lengths and diagonal are consecutive whole numbers.

Find the ratio of circumradius to inradius for this trapezoid.

No Solution Yet Submitted by Jer    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
  Per the diagram in Wikipedia, the smaller base is on the bottom and called b and is the smallest of the four integers. The side is next in size and the top is the largest of the givens. The diagonal needs to be the largest of all four integers.
  
  The program calculates the diagonal from the base, the side and the top. Other formulae go on from there to get the inRadius and circumRadius.
  
  clearvars,clc
  for b=1:20
    s=b+1; t=s+1; % d=t+1;
    h=sqrt(b*t); inRad=h/2;
    bottomAngle=90+atand((t-b)/(2*h));
    dsq= s^2+b^2-2*s*b*cosd(bottomAngle) ;
    d=sqrt(dsq);
    circumR1=s*b*d/sqrt((s+b+d)*(s+b-d)*(s+d-b)*(b+d-s));
    % just a check to see they match for the two equal diameters,
    % using triangle containing top or bottom, second calc:
    circumR2=s*t*d/sqrt((s+t+d)*(s+t-d)*(s+d-t)*(t+d-s));
  %   disp([b s t d])
  %   disp([circumR1 circumR2]);
  %   disp(' ')
    fprintf('%3d %3d %3d %15.12f %15.12f %15.12f %15.12f\n' ,b,s,t,d,circumR2,inRad,circumR2/inRad);
end
  
      
base side top    diagonal      circumradius     inradius          ratio
  1   2   3  2.645751311065  1.527525231652  0.866025403784  1.763834207376
  2   3   4  4.123105625618  2.186606960567  1.414213562373  1.546164609607
  3   4   5  5.567764362830  2.875181153713  1.936491673104  1.484737163421
* 4   5   6  7.000000000000  3.572172541559  2.449489742783  1.458333333333 ***
  5   6   7  8.426149773176  4.272837799068  2.958039891550  1.444482818259
  6   7   8  9.848857801796  4.975460615193  3.464101615138  1.436291762762
  7   8   9 11.269427669585  5.679257720334  3.968626966597  1.431038434233
  8   9  10 12.688577540450  6.383817431600  4.472135955000  1.427464973301
  9  10  11 14.106735979666  7.088901554721  4.974937185533  1.424922826229
 10  11  12 15.524174696260  7.794362278810  5.477225575052  1.423049347157
 11  12  13 16.941074346097  8.500102837716  5.979130371551  1.421628616456
 12  13  14 18.357559750686  9.206057141645  6.480740698408  1.420525456898
 13  14  15 19.773719933285  9.912178471521  6.982120021884  1.419651687518
 14  15  16 21.189620100417 10.618432844419  7.483314773548  1.418947774582
 15  16  17 22.605309110915 11.324794938195  7.984359711336  1.418372336371
 16  17  18 24.020824298929 12.031245490620  8.485281374239  1.417895878756
 17  18  19 25.436194683954 12.737769584735  8.986100377806  1.417496917372
 18  19  20 26.851443164195 13.444355486391  9.486832980505  1.417159500333
 19  20  21 28.266588050205 14.150993836703  9.987492177719  1.416871581464
 20  21  22 29.681644159312 14.857677078932 10.488088481702  1.416623925785
 
As the numbers get larger, the figure approaches being a square. 
 
 
The appropriate result is the line where the base is 4, the side is 5, the top is 6.

The resulting diagonal is 7.000000000000 and the circumradius is 3.572172541559 (35/(4*sqrt(6)) per Wolfram Alpha) and the inradius is 2.449489742783 (sqrt(6) per Wolfram Alpha). Their ratio is found to be 1.458333333333, which is presumably 4.375/3 = 35/24, agreeing with Wolfram's identifications.

  Posted by Charlie on 2022-11-30 09:39:15
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information