All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Fraction-Fraction-Fraction Finding (Posted on 2022-12-02) Difficulty: 3 of 5
P/Q is a fraction with the smallest positive integer denominator that satisfy the undernoted inequality:
  
       386       P     35
       ----- <  --- < ----
       2019      Q     183
where P is also a positive integer.
Determine the minimum value of P+Q

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 2 of 2 |
The program uses a Euclidean algorithm that ordinarily is used in finding the GCD of two integers, but in this instance tries to get a rational number as close to zero difference from a "real number" goal by keeping track of how many times the original number is included and how many times a 1 is included. The goal is varied from the lower fraction to the higher one in ten steps. As soon as a number is found, the algorithm stops.

Two vector matrices keep track of the numerator and denominator, which are actually the coefficients for the goal to be reached using the goal and the integer 1 and therefore are one positive and one negative, so that has to be changed to absolute values in what we are seeking.

clc
low=386/2019, high=35/183
for goal=low:(high-low)/10:high
  disp([low high])
  disp(goal)
  disp(' ')
  a=goal;
  b=1;
  aSet=[1 0];
  bSet=[0 1];

  for i=1:15
    q=floor(a/b);
    r=a-q*b;
    cSet=aSet-q*bSet;

    a=b; b=r;
    aSet=bSet; bSet=cSet;

    disp([r cSet(1) cSet(2)  cSet(2)/cSet(1) cSet(1)/cSet(2)])
    if abs(cSet(1)/cSet(2))>low && abs(cSet(1)/cSet(2))< high ...
        || abs(cSet(2)/cSet(1))>low && abs(cSet(2)/cSet(1))< high
      break
    end
  end
  disp(' ')
end

The best fit of the 11 resulting trials finds 48/251 ~= 0.191235059760956, which fits between the given fractions which are, in approximation,  0.191183754333829 and 0.191256830601093.

The total of the numerator plus denominator is 299.

The three middle trials all show 48/251 as the best value that fits.

Output:

    0.191183754333829         0.191256830601093
    0.191234907720914
    0.191234907720914      1      0                     0                  Inf
   0.0438254613954319     -5      1                  -0.2                   -5
   0.0159330621391862     21     -4     -0.19047619047619                -5.25
   0.0119593371170595    -47      9    -0.191489361702128    -5.22222222222222
  0.00397372502212662     68    -13    -0.191176470588235    -5.23076923076923
 3.81620506796909e-05   -251     48    -0.191235059760956    -5.22916666666667
 
Annotated:

Acceptable bounds (exclusive):    0.191183754333829         0.191256830601093
Goal:    0.191234907720914

  Amount left over        trial num      approximate            reciprocal
                           and den          value
    0.191234907720914      1      0                     0                  Inf
   0.0438254613954319     -5      1                  -0.2                   -5
   0.0159330621391862     21     -4     -0.19047619047619                -5.25
   0.0119593371170595    -47      9    -0.191489361702128    -5.22222222222222
  0.00397372502212662     68    -13    -0.191176470588235    -5.23076923076923
 3.81620506796909e-05   -251     48    -0.191235059760956    -5.22916666666667


The reciprocal is shown in the output as I wasn't sure which was to be the approximation to the goal.


  Posted by Charlie on 2022-12-02 10:10:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information