All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Rising above the ceiling (Posted on 2022-12-06) Difficulty: 3 of 5
x and y are two real numbers, each of which is uniformly randomly chosen in the interval (1,5).

Determine the probability of each of the following events:

(i) ⌈3*x⌉ + ⌈4*y⌉ = ⌈3*x + 4*y⌉
(ii) ⌈3*x⌉ - ⌈4*y⌉ = ⌈3*x - 4*y⌉
(iii) ⌈3*x⌉ * ⌈4*y⌉ = ⌈12*x*y⌉           
                             
      ⌈3*x⌉              
(iv) --------- = ⌈(3*x)/(4*y)⌉
      ⌈4*y⌉ 
*** ⌈n⌉ denotes ceiling(n), that is, the lowest integer greater than or equal to n.

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Some simulatons | Comment 1 of 6
The program simulates the four problems in sequence:


clearvars 
 
ct=0;
for trial=1:10000000
   x=4*rand+1; y=4*rand+1;
   LHS=ceil(3*x)+ceil(4*y); 
   RHS=ceil(3*x+4*y);
   if LHS==RHS
      ct=ct+1;
   end
end
disp(ct/trial)
 
ct=0;
for trial=1:10000000
   x=4*rand+1; y=4*rand+1;
   LHS=ceil(3*x)-ceil(4*y); 
   RHS=ceil(3*x-4*y);
   if LHS==RHS
      ct=ct+1;
   end
end
disp(ct/trial)

ct=0;
for trial=1:100000000
   x=4*rand+1; y=4*rand+1;
   LHS=ceil(3*x)*ceil(4*y); 
   RHS=ceil(3*x*4*y);
   if LHS==RHS
      ct=ct+1;
   end
end
disp([ct/trial trial/ct])
 
ct=0;
for trial=1:100000000
   x=4*rand+1; y=4*rand+1;
   LHS=ceil(3*x)/ceil(4*y); 
   RHS=ceil(3*x/(4*y));
   if LHS==RHS
      ct=ct+1;
   end
end
disp([ct/trial trial/ct])


simulates the four scenarios.

Results follow below. 10,000,000 trials were done for each of the first two cases, but 100,000,000 for each of the 3rd and 4th cases.

In the 3rd and 4th cases, the reciprocal of the probability is also shown.

>> risingAboveTheCeilingSim
                 0.4999915
                 0.500416
                 0.00588581          169.900149682032
                 0.03342845          29.9146385788153
                 
For addition and subtraction the probability appears to be 1/2.

For multiplication, .00588 or .00589 or about 1 in 170.
For division, .03343 or about 1 in 29.9.


  Posted by Charlie on 2022-12-06 09:56:10
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information