All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Triangular and Heptagonal Hindrance (Posted on 2022-12-22) Difficulty: 3 of 5
Each of x and y is a positive integer that satisfies this equation:
xoC=yoF

Determine the minimum value of x+y such that:
x is a triangular number and, y is a heptagonal pyramidal number.
What is the next smallest value of x+y?

*** oF = (9/5)*oC+32, where oF represents degree Fahrenheit and, oC represents degree Celsius.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 3
for n=1:1000
  hept(n)=n*(n+1)*(5*n-2)/6;
end
x=0;
for x0=1:2000
  x=x+x0;
  y=9*x/5+32;
  if y==round(y)
     if ismember(y,hept)
       disp([x y x+y x0 find(hept==y)])
     end
  end
end

finds                                
                                            ordinal
   x          y          x + y      triangular  heptagonal
 
  630        1166        1796          35          11
  820        1508        2328          40          12


1796 and 2328 are the sought numbers.


  Posted by Charlie on 2022-12-22 10:28:40
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information