All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Provisory Pairs (Posted on 2023-01-21) Difficulty: 3 of 5
Determine all possible pairs of positive integers satisfying each of these conditions:
  • The last digit of their sum is 5.
  • Their difference is a prime number.
  • Their product is a perfect square.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts some numbers to look at | Comment 1 of 2
clearvars,clc
for s=5:10:10000000
   for a=1:s/2
      b=s-a;
      if isprime(b-a)
         sq=a*b;
         sr=round(sqrt(sq));
         if sr^2==sq
           fprintf('%5d %5d %5d %5d %10d %5d\n',a, b, s, b-a, sq, sr)
         end
      end
   end
end

provides the first few, until stopped:

  a      b    a+b   b-a      a*b    sqrt(a*b)
    1     4     5     3          4     2
    9    16    25     7        144    12
   36    49    85    13       1764    42
   64    81   145    17       5184    72
  121   144   265    23      17424   132
  324   361   685    37     116964   342
  441   484   925    43     213444   462
  529   576  1105    47     304704   552
  676   729  1405    53     492804   702
 1089  1156  2245    67    1258884  1122
 1296  1369  2665    73    1774224  1332
 1681  1764  3445    83    2965284  1722
 2304  2401  4705    97    5531904  2352
 2601  2704  5305   103    7033104  2652
 2809  2916  5725   107    8191044  2862
 3136  3249  6385   113   10188864  3192
 3969  4096  8065   127   16257024  4032
 4624  4761  9385   137   22014864  4692
 6084  6241 12325   157   37970244  6162
 6561  6724 13285   163   44116164  6642
 6889  7056 13945   167   48608784  6972
 7396  7569 14965   173   55980324  7482
 9216  9409 18625   193   86713344  9312
 9604  9801 19405   197   94128804  9702
12321 12544 24865   223  154554624 12432
12769 12996 25765   227  165945924 12882
13456 13689 27145   233  184199184 13572
16384 16641 33025   257  272646144 16512
17161 17424 34585   263  299013264 17292

Both summands seem to be perfect squares, but other than that I don't see a commonality other than what was required. It seems only one value of b-a comes up for a given b+a and these prime values come up in increasing order as a+b increases. Not every prime shows up.

  Posted by Charlie on 2023-01-21 09:11:18
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information