All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Possible Pisano Poser? (Posted on 2023-02-21) Difficulty: 3 of 5
Consider all possible pairs (M, N) of positive integers that satisfy this equation:
          M2 = N(M+N) - 1
• If this equation has a finite number of solutions, then list all of them.

• If the total number of solutions is infinite, then find the general forms of M and N with valid reasoning.

Note: Extra credit wii be given for a semi-analytic (hand calculator and p&p) solution.

No Solution Yet Submitted by K Sengupta    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 4
m^2 = n(m+n) - 1

m^2 - n*m - n^2 + 1 = 0
 
quadratic for m given constant n.

For n from 1 to 1,000,000:  
      
for n=1:1000000  % given n, solving for m
  s=roots([1,-n,1-n^2]);  % polynomial coefficients
  s1=sprintf('%14.14f',s(1));
  s2=sprintf('%14.14f',s(2));
  s=[str2double(s1) str2double(s2)];
  if s==round(s)
    disp([s n])
  end
end      


        Possible M values        N
        
           0           1           1
           3          -1           2
           8          -3           5
          21          -8          13
          55         -21          34
         144         -55          89
         377        -144         233
         987        -377         610
        6765       -2584        4181
       17711       -6765       10946
       46368      -17711       28657
      317811     -121393      196418
      832040     -317811      514229 
    
      
 

Values of (M,N) are (F(2*i),F(2*i-1))  where F(n) is the nth Fibonacci number, named after Leonardo of Pisa. Note that the first row has its positive M in the second column rather than the first.

The pattern does continue, with non-positive values, when N is non-positive:

        -144          55         -89
         -55          21         -34
         -21           8         -13
          -8           3          -5
          -3           1          -2
           0          -1          -1

Note: the solution for N = 0 has an imaginary M = +/- i.

  Posted by Charlie on 2023-02-21 15:05:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information