All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Reciprocal Equation #7 (Posted on 2023-02-24) Difficulty: 4 of 5
Each of P, Q, R, and S is a positive integer with P<Q<R<S.

Find the quadruplets (P, Q, R, S) that satisfy this equation:

         1/P + 1/Q + 1/R + 1/S = 1
Prove that these are the only possible quadruplets that satisfy the given conditions.

Note: Computer program solutions are welcome, but a semi-analytical solution is preferred.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 4
clc
for p=2:5000
  if 1-4/p>.000001
    lastp=p;
    break    
  end
  for q=p+1 :5001
    sum1=1/p+1/q;
    if 1-sum1-2/q>.0001
      lastq=q;
      break      
    end
    if sum1<1
      for r=q+1:5002
        sum2=sum1+1/r;
        if 1-sum2-1/r>.00001
          lastr=r;
          break          
        end
        s=1/(1-sum2);
        if s>r
          if abs(s-round(s))<1e-12
            disp([p q r s])
          end
        end
      end
    end
  end
end

 P           Q            R                 S

 2           3            6      9.00719925474099e+15
 2           3            7          41.9999999999998
 2           3            8                        24
 2           3            9                        18
 2           3           10                        15
 2           4            5                        20
 2           4            6                        12
 
The first row is spurious; its S value would be "infinity" if it were legitimate, as the sum of the first three reciprocals completes the total of 1.

The second row has a rounding error for S.

The complete set is
 
 2           3            7            42 
 2           3            8            24
 2           3            9            18
 2           3           10            15
 2           4            5            20
 2           4            6            12
 
The completeness is based on the points at which the break statements broke out of the loops, which was when even if the remainder of the reciprocals (such as 1/R + 1/S when looping for Q) were as large as the current value of the current variable (in the example, Q), they still would not complete the total of 1.

For example, 1/2 + 1/3 = 5/6 leaving 1/6 to go. How far does R need to go? Since 2/7 would be more than enough to cover the gap, as would 2/8, 2/9, 2/10, 2/11 or 2/12. But it would be useless to try 13 as a value for R as 2/13 would not amount to 1/6, much less 1/13 plus the reciprocal of an even higher number than 13.

The nominal endings of the loops were never reached, only the breaks based on the above method. P can never be above 5, etc. as the reciprocals after that could never reach a total of 1.

  Posted by Charlie on 2023-02-24 08:47:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information