All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Finding Two Calculator Fractions (Posted on 2023-03-02) Difficulty: 3 of 5
Lionel has a calculator that displays a maximum of ten digits (for example: 3,478,062,139 and 0.073672932)
• Lionel chose 4 distinct prime numbers p,q,r and s all less than 100 and he calculates p/q – r/s. The result is 0.180451127. Determine p,q,r and s.
• Consider the two base ten numbers 0.728101457 and 0.635149023. One of these numbers is the result displayed by Lionel's calculator of an irreducible fraction u/v with u and v, that are positive integers less than 1000. The decimals of the other number are taken from a table of random numbers.

Determine the terms u and v of the irreducible fraction.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solutions | Comment 3 of 4 |
Part 1:

pr=primes(100);
for a=1:25
  p=pr(a);
  for b=1:25
    q=pr(b);
    for c=1:25
      r=pr(c);
      for d=1:25
        s=pr(d);
        if abs(p/q-r/s - .180451127) < .00000001
          fprintf('%3d %3d %3d %3d %15.13f\n',p,q,r,s,p/q-r/s)
        end
      end
    end
  end
end

finds

  p   q   r   s     p/q-r/s
  2   7   2  19  0.1804511278195
 17  19   5   7  0.1804511278195
 23   7  59  19  0.1804511278195
 37   7  97  19  0.1804511278195
 
The first row has repeated primes, which is disallowed by the need for distinct primes.

The second row is presumably the expected answer, as it uses "proper" fractions.

The last two rows involve so-called improper fractions.

Lionel's calculator apparently truncates rather than rounds, I guess as a result of having no guard digits.

Part 2:

for goal=[0.728101457  0.635149023]
  disp(' ')
  disp(goal)
  matrix=[1 0; 0 1];
  x=goal; y=1;
  for i=1:15
    q=floor(x/y);
    r=x-q*y;
    x=y; y=r;
    newrow=matrix(1,:)-q*matrix(2,:);
    matrix(1,:)=matrix(2,:);
    matrix(2,:)=newrow;
    fprintf('%9d %9d  %14.12f\n',newrow, abs(newrow(2)/newrow(1)))
  end
end

finds

(showing the goal and successively better rational approximations to it.)

               0.728101457
        1         0  0.000000000000
       -1         1  1.000000000000
        3        -2  0.666666666667
       -4         3  0.750000000000
       11        -8  0.727272727273
     -103        75  0.728155339806
      114       -83  0.728070175439
     -217       158  0.728110599078
      331      -241  0.728096676737
     -548       399  0.728102189781
     1975     -1438  0.728101265823
    -2523      1837  0.728101466508
    39820    -28993  0.728101456554
   -42343     30830  0.728101457148

It took 5 digits each in numerator and denominator to get 30830/42343 as a good enough approximation to 0.728101457, so this is the random-digit number. u=618 v=973

   124506    -90653  0.728101456958
 
               0.635149023
        1         0  0.000000000000
       -1         1  1.000000000000
        2        -1  0.500000000000
       -3         2  0.666666666667
        8        -5  0.625000000000
      -11         7  0.636363636364
       74       -47  0.635135135135
     -973       618  0.635149023638


u=618 v=973

     
  1609416  -1022219  0.635149023000
 -1610389   1022837  0.635149023000
 17713306 -11250589  0.635149023000
-19323695  12273426  0.635149023000
 56360696 -35797441  0.635149023000
-132045087  83868308  0.635149023000
452495957 -287402365  0.635149023000


  Posted by Charlie on 2023-03-02 15:38:38
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information