Given
S(n)= 1*1!+2*2!+3*3!+4*4!+…n*(n)!
Evaluate S(100)
S(n)= 1*1!+2*2!+3*3!+4*4!+......+n*n!
= (2-1)*1! +(3-1)*2! + (4-1)*3!+.......+(n+1-1)*n!
= 2*1! -1*1! +3*2!- 1*2! + 4*3! - 3! + ......+ (n+1)*n! -1*n!
= 2!-1! + 3! -2! + 4! -3! +........+(n+1)! - n!
= (n+1)! -1
Therefore, S(100) = 101! -1
Edited on April 4, 2023, 1:24 pm